Какие ядра у современных Cad и Cam систем? Общая структура ядра CAD, или CAD для "самых маленьких" Какое графическое 3d ядро у сапр leapfrog.

Сегодня представить современное производство без каких-либо средств автоматизации очень сложно. Каждое мелкое или крупное предприятие так или иначе сталкивается с системами автоматизированного проектирования. И в частности с CAD системами.
Как правило, основой САПР является графический редактор, при помощи которого создаются и редактируются электронные макеты, состоящие из примитивов (точек, отрезков, дуг и тд). Примитивы могут быть объединены в блоки и многократно использованы при создании других электронных макетов, что колоссально повышает производительность труда инженера-проектировщика. Современные программы позволяют создавать и редактировать пространственные модели объектов практически неограниченной сложности.
Фундаментальный компонент в архитектуре системы трехмерного моделирования – геометрическое ядро. Геометрическое (математическое) ядро - это набор функций, выполнение которых обеспечивает построение трехмерных моделей. Ядро не самоценно, оно создается для использования в прикладных программах. Доступ к функциям ядра конечному пользователю открывает CAD-система (как правило, через графический пользовательский интерфейс). Кроме того, ядро иногда называют «движком» системы геометрического моделирования. Подобно тому, как двигатель автомобиля определяет «потолок» его скорости, математическое ядро определяет предел функциональных возможностей использующей его САПР.
Основные функции ядра:
- представление геометрических данных в контексте системы;
- реализация хранения данных в нейтральных форматах для обеспечения интеграции с существующими системами, необходимой для возможности широкого распространения продукта;
- реализация типичных операций представления, таких как масштабирование, поворот и перемещение поверхностей;
- реализация простейших операций редактирования тел и поверхностей;
- интерактивное взаимодействие с компонентами математической модели проектируемого изделия и получения сведений о размерах и положении частей математической модели.

Схематически ядро можно представить, как показано на рис 1.

Рис 1. Структура ядра

Структура данных и топология

Топология определяет отношения между простыми геометрическими объектами, которые могут быть связаны между собой и представлять единый сложный геометрический объект. Структуры данных, используемые для описания объемных тел, обычно делятся на три типа в зависимости от того, какие тела ими описываются.

Первая структура представляет собой дерево, описывающее историю применения булевских операций к примитивам. Журнал операций носит название конструктивное представление объемной геометрии (CSG). А само дерево называется деревом CSG


Рис 2. Дерево CSG

Дерево CSG обладает следующими преимуществами :
· структура данных проста, а их представление компактно, что облег-чает обработку;
· объемное тело, описываемое деревом CSG, всегда является коррект-ным, то есть его внутренний объем однозначно отделен от внешнего. Примером некорректного объемного тела является тело с лишним ребром. Для него деление объема на внутренний и внешний вблизи вершины, к которой подходит это ребро, оказывается неоднознач-ным;
· представление CSG всегда может быть преобразовано к соответст-вующему представлению B-Rep. Это позволяет взаимодействовать с программами, ориентированными на использование B-Rep;
· параметрическое моделирование легко реализуется изменением па-раметров соответствующих примитивов
Недостатки :
· поскольку дерево CSG хранит историю применения булевских опе-раций, в процессе моделирования могут использоваться только они. Это требование жестко ограничивает диапазон моделируемых объек-тов. Более того, оно исключает использование удобных функций ло-кального изменения, таких как поднятие и скругление;
· для получения сведений о граничных поверхностях, их ребрах и свя-зях между этими элементами из дерева CSG требуется сложные вы-числения. К сожалению, сведения о границах нужны для множества приложений, в частности для отображения тел. Для того, чтобы ото-бразить затушеванное изображение или чертеж объемного тела, нужно иметь информацию о гранях или вершинах этого тела. Поэто-му представление CSG является недостаточным для интерактивного отображения тел и манипулирования ими. Другой пример – расчет траектории движения фрезы с ЧПУ для обработки поверхностей те-ла. Для этой задачи нужны сведения о поверхностях, их ребрах и связности. Получить все эти данные из дерева CSG очень непросто.

Из-за этих недостатков разработчики программ, основанных на представ-лении CSG, стараются добавить соответствующие сведения о границах. Такое комбинированное математическое представление называется гибридным и тре-бует поддержания согласованности между структурами данных.

Вторая структура содержит сведения о границах объема (вершинах, реб-рах, гранях) и их соединении друг с другом. Это представление называется гра-ничным представлением (boundary representation - B-rep). Многие структуры B-rep строятся по-разному в зависимости от того, какой элемент считается основ-ным при сохранении сведений о связности.
Допустим, есть тело, представленное на рис. 3.

Рис 3 Дерево CSG

В структуре B-Rep это тело будет выглядеть, как показано в табл. 1.

Табл 1. Представление тела в структуре B-Rep

В каждой строке таблицы ребер хранятся вершины, находящиеся на кон-цах соответствующего ребра, а в строках таблицы вершин хранятся координаты всех вершин. Эти координаты обычно определяются в модельной системе ко-ординат, связанной с данным телом. Если убрать отсюда таблицу граней, эту структуру данных можно будет использовать для хранения форм, созданных в системах каркасного моделирования. Структура данных для каркасной модели может использоваться в качестве базовой для систем автоматизированной раз-работки чертежей, если допустить указание двумерных координат для точек.
Структура данных B-Rep выглядит очень простой и компактной. Однако она не используется в развитых системах твердотельного моделирования из-за перечисленных ниже недостатков.
· Структура данных B-Rep ориентирована на хранение плоских много-гранников. Если потребуется сохранить данные о теле с криволиней-ными гранями и ребрами, то строки таблиц граней и ребер придется изменять таким образом, чтобы в них можно было включить уравне-ния поверхности и кривой соответственно (уравнения поверхностей и кривых, а также координаты вершин называют геометрическими данными, тогда как отношения между гранями, ребрами и вершина-ми называют топологическими данными. Данные в любой структуре B-Rep могут быть классифицированы либо как геометрические, либо как топологические). Уравнения для плоских граней сохранять не обязательно, поскольку плоские грани определяются находящимися на них вершинами.
· Грань с внутренними и внешними границами (рис. 4 а) не может быть сохранена в таблице граней, поскольку для нее нужно два списка ребер вместо одного. Такие грани появляются, например, при моделирова-нии объемных тел со сквозными отверстиями. Простым решением этой проблемы является добавление ребра, соединяющего внешнюю и внутреннюю границы (рис. 4 б). В этом случае два списка вершин мо-гут быть объединены. Соединительное ребро называется мостиком или перемычкой (bridge edge) и попадает в список ребер в двух экземплярах.


Рис. 4. Поверхность с двумя границами и метод их обхода
· Количество ребер у разных граней может быть различно (см. табл.1). Более того, невозможно определить заранее количество столбцов (по одному на каждое ребро), которые потребуются для конкретной грани, поскольку это количество может меняться в процессе моделирования. Следовательно, количество столбцов должно сохраняться в виде пере-менной в момент объявления таблицы граней. Работа с таблицей пере-менного размера создает некоторые неудобства.
· Получать сведения о связности непосредственно из данных, сохранен-ных в трех таблицах, может быть довольно утомительно. Представьте себе поиск двух граней с общим ребром в случае граничного представ-ления тела в трех таблицах. Придется просмотреть всю таблицу граней, чтобы найти строки, в которых присутствует нужное ребро. Если нужно найти все ребра, соединяющиеся в конкретной вершине, опять-таки придется просматривать всю таблицу ребер. Легко видеть, что при больших размерах таблиц поиск в них становится крайне неэффективным.

Есть две распространенные структуры данных, которые позволяют избе-жать перечисленные проблемы при сохранении граничного представления объ-емного тела. Это структура полуребер (список граней, каждой из которых со-ответствует двусвязный список ребер, главная роль отводится граням) и структура крыльевых ребер (главная роль отводится ребрам, для каждого реб-ра сохраняется список граней, которым оно принадлежит, ребер, с которыми оно имеет общие вершины, и вершин на его концах).

Третья структура представляет объем в виде комбинации элементарных объемов (например, кубов) – декомпозиционная модель (воксельное представ-ление, октантное дерево – совокупность шестигранников, ячеечное представле-ние).


Рис. 5. Декомпозиционная модель

Математический аппарат

Математический решает ряд задач. Это непосредственное представление кривых и поверхностей, пересчет координат при изменении параметров (это выполняет т.н. параметризатор), а также решение систем уравнений для нахождения пересечения поверхностей и кривых.
Для каждого криволинейного ребра в компьютере хранится либо уравнение кривой, либо эквивалентные характеристические параметры (центр, радиус, вектор нормали к плоскости, в которой лежит окружность, - примеры характеристических параметров, эквивалентных уравнению окружности).
Уравнения кривых можно разделить на два основных типа . К первому типу относятся параметрические уравнения, описывающие связь координат x, y и z точки кривой с параметром. Ко второму типу относят непараметрические уравнения, связывающие x, y и z некоторой функцией.
В САПР чаще всего используются параметрические уравнения кривых и поверхностей. В некоторых случаях точки пересечения кривых удобно искать, если одна из кривых задана в параметрической форме, а другая – в непараметрической. Поэтому в отдельных системах используется преобразование уравнений из параметрической формы в непараметрическую и обратно.
Чаще всего для описания кривых, используемых в программах CAD, используются уравнения третьего порядка, потому что они обладают важным свойством: две кривые, описываемые такими уравнениями, могут быть соединены таким образом, что вторые производные в точке соединения будут равны друг другу. Это означает, что кривизна в точке соединения остается постоянной, отчего кривые кажутся одним целым. Ту же непрерывность можно получить и для кривых более высоких порядков, однако работа с ними требует интенсивных вычислений.
Уравнения поверхностей, как и уравнения кривых делятся на два основных типа: параметрические, связывающие значения x, y и z со значениями параметра (самые распространенные), и непараметрические, связывающие координаты x, y и z непосредственно друг с другом какой-либо функцией.
Расчет точек пересечения кривых необходим для определения границ ксегментов при применении булевских операций. Ксегмент - часть кривой, по которой пересекаются две грани, относящиеся к разным объемным телам. Ксегмент принадлежит обеим граням. Границы ксегмента получаются путем вычисления точек пересечения кривой, ограничивающей пересекающие поверхности, с кривой, по которой пересекаются эти поверхности (относящиеся к разным телам). После получения границ ксегмента нужно сделать еще один шаг, чтобы разделить кривую пересечения в точках пересечения.

Модуль визуализации

Раньше почти все приложения работы с графикой имели свой внутренний графический движок. Сейчас же появились специализированные графические библиотеки.
Конкретное приложение может обращаться напрямую через аппаратно-зависимый драйвер устройства или через графическую библиотеку.
1) Приложение -> драйвер -> Устройство ввода/вывода.
2) Приложение -> Графическая библиотека -> Драйвер -> Устройство ввода/вывода
Недостаток первого подхода – требуется поддержка большого количества видеокарт.
Графическая библиотека представляет собой набор подпрограмм, предназначенных для решения определенных задач. Она основывается на командах драйвера устройства. В современных САПР для визуализации используется библиотека OpenGL.

Набор интерфейсов API

API (Application Program Interface) – интерфейс прикладной программы. Набор таких интерфейсов должен обеспечить взаимосвязь между внешними модулями прикладной программы и низкоуровневыми функциями ядра, а так же между компонентами ядра – различными библиотеками.

Вместо заключения
Разработка ядра является очень наукоемкой и сложной задачей. Для её реализации требуется привлечение большого числа высококвалифицированных специалистов и, в первую очередь, математиков. Разработка и отладка функции ядра может занять очень длительный срок, что не всегда приемлемо для многих компаний.

Литература

1. Ли К. Основы САПР (CAD/CAM/CAE). – СПб.: Питер, 2004. – 560 с.

09.09.2015, Ср, 16:02, Мск , Текст: Владислав Мещеряков

«Дочка» компании «Аскон» C3D Labs сообщила о продаже лицензии на свое геометрическое ядро C3D южнокорейской SolidEng. В C3D Labs говорят о своем продукте как об одном из пяти самых распространенных коммерческих ядер на рынке.

Продажа ядра корейцам

Отечественный разработчик систем автоматизированного проектирования компания «Аскон» продал права на использование своего геометрического ядра C3D южнокорейской компании SolidEng.

Геометрическое ядро - это совокупность программных средств (библиотек), на основе которых строятся средства проектирования, управления станками с ЧПУ и различного инженерного ПО.

В частности, на ядре C3D базируются несколько продуктов самого «Аскона»: система трехмерного моделирования «Компас-3D», модули «Компас-График», «Компас-Строитель» и др.

Покупатель асконовского ядра компания SolidEng - говорит о себе как о ведущей южнокорейской консалтинговой компании и системном интеграторе, занятом трехмерным проектированием (3D PLM) в автомобильной, аэрокосмической, судостроительной отраслях.

Кроме того, SolidEng разрабатывает собственные программные решения для различных производств, а также мобильные игры.

Узел, разработанный системой на основе ядра C3D

Секретные условия продажи

Для каких работ SolidEng планирует использовать приобретенное у «Аскона» ядро C3D, корейцы не сообщают. Известно, что соглашение между компаниями не ограничивает число лицензий на ядро в пределах единого центра разработки (таким образом над проектом с применением ядра C3D смогут трудиться неограниченное число разработчиков).

Сумма сделки не раскрывается. Представители «Аскона» говорят, что это - обычная практика для сделок по лицензированию геометрических ядер, которые, как правило, всякий раз заключаются на отдельно оговариваемых условиях.

По информации с официального сайта «Аскон», лицензия на ядро C3D подразумевает ежегодную оплату. При выпуске заказчиком коммерческих продуктов или услуг на базе C3D, он должен ежеквартально перечислять роялти «Аскону». Величина роялти не зависит от стоимости продукта - она фиксированная. В качестве опции «Аскон» предлагает расширенную техподдержку и сопровождение с годовой оплатой.

Вторая похожая сделка

Интересно, что лицензирование ядра SolidEng - не первая подобная сделка, заключенная с южнокорейской компанией: до этого пользователем и дистрибьютором ядра стала компания Solar Tech.

Кроме того, весной 2015 г. о продаже лицензии ядра C3D шведской компании Elecosoft Consultec. Это была первая сделка такого рода в Западной Европе у «Аскона».

Как уточняют в «Асконе», сейчас у компании имеются 17 клиентов-покупателей ядра, среди которых есть РФЯЦ-ВНИИЭФ, частные компании и университеты из России («НТП Трубопровод», «НИП-Информатика», Центр «ГеоС», «Базис-центр», Мордовский государственный университет) и Украины.

C3D как популярный продукт

Непосредственный разработчик ядра - компания C3D Labs, «дочка» «Аскона» и резидент «Сколково».

Представитель C3D Labs Аркадий Камнев причисляет C3D к числу пяти самых известных геометрических ядер, доступных для коммерческого лицензирования. Остальные четыре это Parasolid (разрабатывается Siemens PLM Software), ACIS (Spatial, Dassault Systemes), CGM (Dassault Systemes), а также ядро с открытым кодом Open CASCADE, в создании которого принимает участие центр разработки в Нижнем Новгороде.

Печатных плат присутствуют три ключевых компонента C3D Toolkit: геометрическое ядро C3D Modeler, параметрический решатель C3D Solver и модуль обмена C3D Converter. Компоненты от C3D Labs также задействованы в разработке Altium Nexus, решения для совместного проектирования печатных плат. Подробнее .

2018

Интеграция с APM Studio

  • Программное обеспечение для инженерных расчетов РФЯЦ-ВНИИТФ

2015

Ядерный центр создаст собственное ПО на базе 3D-ядра «Аскон»

В июне компания «Аскон» сообщила, что в Сарове (РФЯЦ-ВНИИЭФ) лицензировал геометрическое ядро C3D, разработчиком является ее дочерняя компания C3D Labs . Его организация планирует использовать в программных продуктах собственной разработки, предназначенных для решения задач расчетного моделирования физических процессов.

Одним из таких продуктов является пакет программ «Логос» для имитационного моделирования на высокопроизводительных компьютерах. Его областями применения является авиационная промышленность, атомная энергетика, ракетно-космическая отрасль, автомобильная промышленность и др.

В «Аскон» поясняют, что геометрическое ядро C3D будет применяться как в процессе построения расчетных сеток 3D-моделей, так и для выполнения операций по упрощению, корректировке и доработке расчетной геометрии. Кроме того, «Логос» планируется интегрировать с САПР «Компас-3D» разработки «Аскон».

Представители компании рассказали TAdviser, что по условиям лицензионного соглашения с C3D Labs, РФЯЦ-ВНИИЭФ получил права на ведение разработки ПО на основе ядра C3D для использования внутри организации. В случае выпуска коммерческого продукта, C3D Labs будет получать отчисления с каждой проданной лицензии данного продукта. Финансовые детали соглашения при этом не разглашаются. Сделать «Логос» полноценным коммерческим продуктом и продавать его самостоятельно и через партнеров входит в планы РФЯЦ-ВНИИЭФ.

Представитель «Аскон» добавил в разговоре с TAdviser, что до подписания соглашения с РФЯЦ-ВНИИЭФ внешними пользователями ее ядра были только частные компании и университеты, в том числе зарубежные разработчики САПР (Швеция и Южная Корея). РФЯЦ-ВНИИЭФ стал первой организацией, принадлежащей государству, которая лицензировала разработку C3D Labs.

Стоит отметить, что на разработках «Аскон» основана сквозная технология 3D-проектирования, которая входит в состав ядерного оружейного комплекса (ТИС ЯОК), внедряющейся на предприятиях данной отрасли

Elecosoft Consultec купила геометрическое ядро

12 мая 2015 года стало известно о приобретении компанией Elecosoft Consultec ядра «Компас-3D» для использования в собственном продукте, предназначенном для проектирования деревянных лестниц .

Компания «Аскон» продала лицензию на геометрическое ядро, служащее основой для ее продуктов, шведской ИТ-компании Elecosoft Consultec .

2014

Лицензирование C3D корейским разработчиком

В июле 2014 года «Аскон» сообщила о том, что ядро C3D было лицензировано первой зарубежной компанией - южнокорейским разработчиком Solar Tech. На базе C3D будет работать флагманский продукт компании - САМ-система Quick CADCAM, у которой насчитывается более 3 тыс. пользователей в Южной Корее.

В Solar Tech отмечают, что в новом поколении Quick CADCAM перед компанией стоит «амбициозная задача перехода от 2D к 3D, для реализации которой было выбрано российское ядро C3D». По результатам опытной эксплуатации, оно показало себя функциональным и быстрым компонентом, полностью устраивающим команду разработки Solar Tech, добавляют в компании.

На момент сообщения о лицензировании уже был готов уже готов и активно демонстрировался заказчикам первый прототип обновленной системы. Коммерческая версия Quick CADCAM на ядре C3D ожидается к выходу на рынок в 2014 году и должна стать доступна на английском, корейском, китайском и японском языках. После старта продаж версии QuickCADCAM на ядре C3D, Solar Tech будет платить разработчикам отчисления с продаж.

Помимо лицензирования ядра, Solar Tech также приобрела статус реселлера C3D на рынках Кореи, Китая и Японии . Корейские специалисты будут осуществлять продажи, маркетинг и первичную техподдержку заказчиков геометрического ядра.

По словам гендиректора C3D Labs Олега Зыкова , азиатский рынок является одним из ключевых для компании, поэтому она поддержала инициативу Solar Tech представлять интересы C3D Labs в своем регионе.

«Уже подготовлены необходимые маркетинговые материалы, согласованы совместные мероприятия. Специалисты компании обладают всеми необходимыми компетенциями и отличным знаниям рынка для успешной работы с заказчиками», - добавляет он.
.

В начале июля делегация C3D Labs провела тренинг для разработчиков и менеджеров по продажам Solar Tech в Сеуле, а также встретилась с несколькими потенциальными клиентами - местными разработчиками САПР и представителями университетов.

2012

Открытие ядра для сторонних разработчиков

Как поясняли TAdviser в «Аскон», для компании предоставление своего ядра сторонним разработчикам означает выход на новый рынок. «Раньше мы работали на рынке «готового» инженерного ПО, а теперь вышли на рынок компонентов, для создания этого ПО (рынок PLM-компонентов)», - пояснили TAdviser представители компании.


По словам гендиректора «Аскон» Максима Богданова , решение открыть доступ к технологии стало логичным развитием собственного геометрического ядра: «на рынке появляются новые игроки, которым нужны компоненты для разработки своих САПР. Стандартные 2D-пакеты ожидает неизбежный переход в 3D, что требует внесения принципиальных изменений в ядро системы или его замену».

Более 20 лет руководил проектами и исследовательскими группами в НИИ ядерной физики МГУ. Затем - развитием новых проектов в Intel Technologies. С 2011 года - директор по науке и технологиям в ИТ-кластере «Сколково». Автор более двухсот научных публикаций и патентов, доктор физико-математических наук, эксперт в «Роснано» и РВК. Совмещает глубокую научную компетенцию с бизнес-экспертизой.

Алексей Ершов, гендиректор компании «Ледас»

В 1999 году пришел в «Ледас» на должность разработчика ПО. Впоследствии стал главным технологом, руководил ключевыми проектами компании в области геометрических решателей. В 2007 году защитил кандидатскую диссертацию в области геометрических ограничений. В 2011 году стал гендиректором группы. Автор 20 научных работ.

Кто разработал

С 1995 года разработкой ядра C3D руководит кандидат технических наук Николай Голованов. Юрий Козулин отвечает за разработку алгоритмов моделирования, Александр Максименко - за разработку решателя геометрических ограничений, Эдуард Максименко - за разработку прикладного ПО. Под их началом трудятся восемь математиков-программистов.

Разобраться со спецификой зарубежных рынков САПР команде C3D Labs помогают иностранные консультанты, специализирующиеся на компьютерном инжиниринге, - Кен Версприлл, Джоел Орр, Ральф Грабовски и другие.

Клиенты и партнеры

Помимо материнской компании «Аскон», в портфеле C3D Labs 16 заказчиков.

Ядро покупают компании различного профиля. Например, Solar Tech использует его в разработке программы для станков ЧПУ, а Elecosoft Consultec - в создании системы моделирования деревянных лестниц.

Коммерческие продукты на базе ядра C3D разрабатывают технологические партнеры C3D Labs - новосибирская компания «Ледас», томская компания Rubius , индийская компания ProtoTech Solutions и южнокорейская Solar Tech. Кроме того, «Ледас» выступает международным реселлером C3D, а Solar Tech - официальным дистрибьютором ядра на рынках Южной Кореи, Китая и Японии.

Аркадий Камнев

К нам постоянно поступают запросы на тестирование C3D. Это и учебные заведения, и разработчики-стартаперы, и крупные коммерческие организации. Период от первого обращения к нам до принятия решения о лицензировании ПО довольно длительный (от полугода и больше), поэтому сообщать о новых пользователях пока рано. Но мы уверены, что южнокорейской и шведской компаниями список наших иностранных клиентов не ограничится, и скоро мы расскажем о новом зарубежном ПО, созданном на базе российского ядра C3D.

Как зарабатывают

Условия использования ядра обсуждаются индивидуально с каждым заказчиком. Сначала C3D Labs предоставляет бесплатную тестовую лицензию на 3 месяца, которая предполагает полноценную техподдержку от разработчиков. Дальше клиент выбирает лицензию на внутреннее использование, коммерческое использование или дистрибьюцию. Стартапам и вузам C3D Labs предоставляет ядро на льготных условиях.

Аркадий Камнев

менеджер по продукту C3D Labs

Для стартапов у нас действует специальная программа лицензирования ядра. Мы сами являемся стартапом, поэтому отлично понимаем запросы небольших компаний и легко находим с ними общий язык.

Клиенты оплачивают лицензию раз в год. Опционально они могут подключить платную расширенную техподдержку. При выпуске коммерческих продуктов на базе ядра заказчик ежеквартально перечисляет компании фиксированный роялти.

Конкуренты

На несколько сотен разработчиков САПР в мире приходится два десятка разработчиков геометрических ядер. Большинство ядер предназначено исключительно для внутреннего использования либо для слишком узкого спектра задач. «Геометрических движков немного из-за колоссальной трудности их создания и относительной молодости базовой для сферы автоматизированного проектирования науки - компьютерной геометрии», - объясняют в C3D Labs.

Полноценные САПР сторонние разработчики могут создать на базе всего пяти коммерческих ядер (Parasolid, ACIS, C3D, CGM и Open CASCADE). Лидеры глобального рынка - ACIS от французской Spatial (дочка Dassault Systemes) и Parasolid от немецкой Siemens PLM Software. На их основе разработано большинство мировых систем 3D-проектирования.

Николай Суетин

Геометрическое ядро – наиболее трудоемкий компонент систем трехмерного моделирования. Затраты на его разработку крайне высоки, поэтому на мировом рынке представлено так мало коммерческих ядер. А наиболее функциональные из них принадлежат крупным западным разработчикам САПР. Уже более 10 лет на рынке 3D-компонентов не появлялись новые игроки. Сейчас на этом сегменте лидируют Parasolid (Siemens PLM Software, Германия) и ACIS (Dassault Systemes, Франция).

Кстати, в 2011 году на базе МГТУ «Станкин» началась разработка еще одного российского геометрического ядра - RGK (Russian Geometric Kernel). В 2013 году проект был сдан заказчику - Минпромторгу, но на рынок пока не вышел.

Как говорят в C3D Labs, напрямую их продукт не конкурирует с остальными популярными коммерческими ядрами, заняв промежуточную ценовую нишу.

Аркадий Камнев

менеджер по продукту C3D Labs

ACIS, CGM и Parasolid слишком дороги для многих разработчиков. Да и большие компании не так отзывчивы к нуждам маленьких по их меркам клиентов - что естественно. А для разработчиков инженерного ПО скорость обработки их запросов часто довольно критична. Мы так же функциональны, как лидеры рынка, плюс очень быстро реагируем на запросы наших клиентов. Если говорить об OpenCASCADE, у него другая схема лицензирования. Само ядро предоставляется бесплатно, оплачиваются только сервисные функции. Им обычно пользуются небольшие ИТ-компании и предприятия, которые имеют ограниченные бюджеты на разработку и пытаются обойтись малой кровью.


Рынок ядер

Открытых данных об объеме рынка геометрических ядер нет. Традиционно этот сегмент еще более закрытый, чем сфера САПР. Разработчики ядер получают роялти от каждой проданной системы автоматизированного проектирования, поэтому о состоянии их бизнеса можно судить по развитию рынка САПР.

Выводы

Алексей Ершов

гендиректор компании «Ледас»

Одно из важных преимуществ команды C3D - открытость, способность и желание учитывать специфические потребности и возможности партнеров. «Ледас» лицензировал C3D для встраивания в свою программную компоненту LGC контроля изменений в 3Д-моделях в том числе потому, что другие производители геометрических ядер не хотели с нами сотрудничать. Они привыкли работать только с производителями конечно-пользовательских продуктов, их типовые договора не учитывают других возможностей, и они не готовы адаптировать свои бизнес-процессы под конкретного клиента. А команда C3D легко пошла нам навстречу. По-моему, C3D Labs удалось найти свою нишу на рынке, а это залог успеха. Речь о компаниях, нуждающихся в качественном геометрическом ядре, которым недостаточно возможностей и производительности бесплатных аналогов, но не готовых платить столько, сколько требуют владельцы Parasolid и ACIS с их многомиллионными оборотами. Причем это достаточно широкий спектр компаний, в который попадают и разработчики САПР, и промышленные центры, которым C3D нужен для внутренного использования, и производители программных компонент, как моя компания «Ледас».

Николай Суетин

директор по науке ИТ-кластера «Сколково»

Создатели компании C3D Labs работали над алгоритмами C3D более 17 лет. Это позволило им преодолеть высокий порог входа на рынок, недоступный командам без опыта. C3D - единый компонент для решения всех трех задач геометрического моделирования: создание геометрической модели, наложение взаимных связей на элементы модели, конвертация данных. Другого такого универсального компонента на мировом рынке не существует. Инновационность геометрического ядра C3D состоит в использовании уникальных математических алгоритмов, заложенных в основу вычислений. Моделируемые объекты в геометрическом ядре C3D описываются точными математическими поверхностями, что позволяет «бесшовно» соединить их по краям. При этом форма поверхностей может быть сколь угодно сложной. Обрезка и стыковка поверхностей выполняется одновременно с построением модели. Это возможно благодаря оригинальным методам построения геометрической модели и организации данных.

    Это верно:) это бред:) в ТФ можно и так и так =) ощутимой разницы в скорости не будет, можно даже потом взять любую копию перекрасить, поменять отверстия, удалить отверстия, что угодно... и массив все-равно останется массивом - можно менять будет количество копий, направление и тп, видео пилить или так поверите? :) Это верно, а какая задача? Перевести как SW сплайны по точкам в сплайн по полюсам что ли, если подумать это также некоторое изменение исходной геометрии - к этому нет замечаний?:) как я понимаю, ТФ только 1 к 1 и переводит, остальное уже можно настроить в шаблоне ТФ до экспорта в DWG - см. рис под спойлером, либо отмасштабировать в виде AC, что в принципе не противоречит основным методам работы с AutoCAD, а так как в виду распространенности АС на ранних стадиях пика популярности внедрения САПР, то возрастному поколению это привычнее даже: А если еще докапаться к возможностям экспорта/импорта разных САПР: 1) то как из 2D-чертежа SW экспортировать только выделенные линии в DWG? (из 3D документов более менее SW приспособлен, только все-равно придется в маленьком окне предпросмотра чистить лишнее вручную). Заранее удалить все что не нужно, а после этого экспортировать-> как-то не современно, не по-молодежному:) 2) И наоборот как выделенные линии в AutoCAD быстро импортировать в SW(например для эскиза, или же просто как набор линий для чертежа)?(для ТФ: выделил набор нужных линий в AC -ctrl+c и далее в TF просто ctrl+v - всё)

    О какой детали речь, а то может эту деталь не зеркалить надо, а просто привязать иначе и будет как раз как надо. Зеркальная деталь это таже конфигурация только созданная машиной, можно сделать конфигурацию детали самостоятельно и это в некоторых случаях может оказаться изящнее, так же проще редактироваться в последствии.

    Добрый день! В solidcam есть много стратегий для обработки паза, но они излишне усложняют программу. Подскажите есть ли что-то простое для глубокого паза в один проход? В идеале избежать всех отводов по z, как на картинке

    Добрый день, требуется помощь в следующей ситуации. Имеется станок MIKROMAT 20V (3+2 оси) со стойкой Sinumerik 840d. На станке, помимо автоматической смены инструмента, так же есть автоматическая смена фрезерных адаптеров: SPV-удлинитель UhFK-адаптер с двумя поворотными осями "B" и "C" Wbfk - с одной поворотной осью "C" DE- основная крышка для заглушки контактов и гидравлических выведенных на шпиндельной бабке для остальных адаптеров. В связи с этим станкопроизводителем был переопределен цикл M6 как L6, для вызова инструмента совместно с адаптером.
    L6("DRILL_8","UHFK") ; пример вызова цикла смены инструмента в режиме auto/mda Подпрограмма HPOS предназначена для ориентации UHFK и Wbfk, а именно механического поворота осей с пересчетом фактического положения шпинделя от главного шпинделя. За выполнение этого отвечают подпрограммы HAWEX, WEWEX, HATRALIM упоминающиеся в HPOS. HPOS (180,0); пример кадра позиционирования в режиме auto/mda Примерный порядок действий при HPOS: Происходи ориентация шпинделя Отжим зацепления Хирта Поворот оси Зажим зацепления Хирта Пересчет системы координат На данный момент происходит пункт 2 и начала пункта 3, а именно недоворот позиционирования. При этом канал активен, сбоев нет, но мощность шпинделя падает до 0% и надпись "Подождите, воздействие на подачу". Если найдутся добрые люди, буду рад добавить любую информацию. WEWEX.SPF L6.SPF HPOS.SPF HAWEX.SPF HATRALIM.SPF