Системный анализ проблемы. Системный анализ как методология решения проблем Проблемы управления и принятия решений

Математическое описание системы и ее свойств. Внешнее и внутреннее описание систем. Задача реализации. Описание на языке теории множеств и языке состояний. Связь «вход-выход». Системы с конечным числом состояний. Выбор удобного описания. Класс автоматов. Описание на языке энтропии и потенциальных функций. Стохастические системы. Идентификация. Роль ограничений в системе. Понятие нечеткого множества и его применение для описания систем, основные операции на нечетком множестве, функция принадлежности и ее определение. Нечеткая арифметика. Нечеткие множества высшего порядка. Глобальные свойства больших систем: размерность, сложность, связность, устойчивость, непредсказуемость поведения. Структурная устойчивость систем. Катастрофы и адаптируемость систем. Типы сложности систем и способы определения. Структурная, динамическая и вычислительная сложность. Связь между структурной и динамической сложностью. Аксиомы сложности. Классификация системных задач по вычислительной сложности. Машина Тьюринга.

Методы анализа связности и сложности систем.Связность структуры больших систем. Описание связности с помощью графа. Симплексы, комплексы и многомерные связи. Эксцентриситет. Понятие гомотопии. Дыры и препятствия. Цепи и границы. Расширение понятия топологической связности. Покрытия, разбиения и иерархия. Построение разрешающих форм. Алгебраическая связность. Линейные и нелинейные системы. Полугруппы и узловые соединения. Теорема декомпозиции Крона – Роудза и ее применение. Декомпозиция аналитических систем. Структурная сложность и иерархия. Схема связности. Понятие многообразия. Уровни взаимодействия. Динамическая сложность и проблема различных шкал времени. Сложность автоматов. Эволюционная сложность. Топологическая сложность. Сложность и теория информации.

Методы анализа устойчивости и адаптивности систем.Использование внешнего и внутреннего описания для анализа устойчивости систем. Структурная устойчивость. Связная устойчивость и адаптивность. Графы и процессы распространения возмущений в системе. Устойчивость системы «черный ящик» с обратной связью. Внутренние модели и устойчивость. Бифуркация Хопфа. Структурно-устойчивые динамические системы. Теория катастроф и ее использование при решении системных задач. Типы особенностей. Катастрофа типа сборки. Устойчивость по возмущению и по начальному значению. Адаптивность динамических процессов. Адаптивность и катастрофы. Системы Морса – Смейла и адаптивность.

Проблемы управления и принятия решений.Основные задачи системного анализа в управлении. Активное и пассивное управление. Эволюционные системы. Управляемые и неуправляемые системы. Область достижимости. Особенности границы достижимости. Устойчивость управления и обратная связь. Устойчивость по Ляпунову. Управление бифуркацией. Управляемая адаптивность. Понятие об управлении сингулярными распределенными системами. Проблема оптимизации в принятии решений. Проблема выбора и сложность. Одноцелевые и многоцелевые модели принятия решений. Полезность вариантов решений. Риск и его оценка. Эвристические методы поиска решения. Применение теории нечетких множеств к решению задач оптимального выбора. Функциональный подход, основанный на введении нечеткой меры расстояния. Нечеткая классификация, нечеткая логика. Задачи оптимального управления при многих критериях. Дискретные многокритериальные задачи и задачи с непрерывным временем. Марковские модели принятия решений.

Список основной литературы

1. Романов В.Н. Техника анализа сложных систем: Учебное пособие. СПб.: Изд-во СЗТУ, 2011.

2. Романов В.Н. Основы системного анализа: Учебно-методический комплекс. СПб.: Изд-во СЗТУ, 2008.

3. Романов В.Н. Нечеткие системы. СПб.: Издательство «ЛЕМА», 2009.

Список дополнительной литературы

4. Беллман Р. Принятие решений в расплывчатых условиях / Р. Беллман, Л. Заде // Вопросы анализа и процедуры принятия решений: Сб. переводов. Под ред. И.Ф. Шахнова. М.: Мир., 1976.

5. Винер Н. Кибернетика, или управление и связь в животном и машине. М.: Наука, 1989.

6. Волкова В.Н. Теория систем и методы системного анализа в управлении и связи / В.Н. Волкова, В.А. Воронков, А.А. Денисов. М.: Радио и связь, 1983.

7. Железнов И.Г. Сложные технические системы. М.: Высшая школа, 1984.

8. Месарович М. Общая теория систем: Математические основы / М. Месарович, И. Такахара. М.: Мир, 1976.

МЕТОДИКА ПРОВЕДЕНИЯ ТЕСТИРОВАНИЯ И КРИТЕРИИ ОЦЕНКИ ОТВЕТОВ ВЫПУСКНИКОВ НА ИТОГОВОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ

Согласно Положению о тестовой форме контроля знаний студентов и качества обучения Горного университета государственный экзамен проводится в форме тестирования и включает в себя 200 вопросов. Из дисциплин, входящих в первый блок, формируется 100 вопросов итогового теста (примерные тестовые задания приведены в Приложении 1). Остальные 100 вопросов формируются из дисциплин второго блока.

Экзаменационные тесты разрабатываются преподавателями, ведущими соответствующую учебную дисциплину, и сдаются за месяц до проведения итогового государственного экзамена председателю государственной экзаменационной комиссии, подписанные автором, заведующим кафедрой, экспертом из числа ведущих преподавателей кафедры. Председатель государственной экзаменационной комиссии формирует итоговый вариант теста и, после утверждения проректором по учебной работе передает его в отдел тестирования.

Тематика тестовых заданий является комплексной и соответствует избранным разделам из различных учебных циклов, формирующих конкретные компетенции: ОК1-8, ПК1-5, ПК7,ПК10, ПК12.

Тестирование проводится в соответствии с Положением о тестовой форме контроля знаний студентов и качества обучения

Результаты итогового государственного экзамена (распечатка результатов экзамена) выдаются председателю государственной экзаменационной комиссии в отделе тестирования в день экзамена и передаются на рассмотрение государственной экзаменационной комиссии.

На основании выписки из протокола заседания государственной экзаменационной комиссии по рейтинговой оценке результатов тестирования (шкалы) председатель проставляет полученные оценки в опросные карты, в экзаменационную ведомость и в зачетные книжки студентов.

Ответ выпускника на итоговом государственном экзамене определяется оценками: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» в соответствии со шкалой, утверждаемой протоколом заседания государственной экзаменационной комиссии.

Составитель:


Приложение 1

ПРИМЕРНЫЕ ВАРИАНТЫ ТЕСТОВЫХ ЗАДАНИЙ ДЛЯ ПОДГОТОВКИ К СДАЧЕ ИТОГОВОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

№ п.п. Вопросы Варианты ответов
1. Прогноз, результат которого представлен в виде единственного значения характеристики объекта прогнозирования без указания доверительного интервала, называется …
2. Как называется принцип прогнозирования, требующий согласования нормативных и поисковых прогнозов различной природы и различного периода упреждения?
3. Опережающее отображение действительности, основанное на познании законов природы, общества и мышления - это … 1. ретроспекция. 2. реконструкция. 3. верификация. 4. научное предвидение. 5. интуиция.
4. С помощью равенства задается … 1. семейство линий уровня. 2. алгоритм решения задачи. 3. целевая функция. 4. MM- критерий. 5. S-критерий.
5. Как называется принцип прогнозирования, требующий взаимоувязанности и соподчиненности прогнозов объекта прогнозирования и прогнозного фона и их элементов? 1. принцип рентабельности. 2. принцип согласованности. 3. принцип системности. 4. принцип непрерывности. 5. принцип верифицируемости.
6. Прогноз, содержанием которого является определение возможных состояний объекта прогнозирования в будущем, называется … 1. поисковым. 2. нормативным. 3. интервальным. 4. точечным. 5. одномерным.

7. Информационная технология – это … 1. процедура оценки эффективности функционирования системы. 2. процесс, использующий совокупность средств и методов сбора, обработки и передачи данных для получения информации нового качества о состоянии системы, объекта, процесса или явления. 3. процедура восстановления вектора состояния системы по информации о векторе выхода. 4. процесс перевода системы из одного состояния в другое за счет воздействия некоторого управления. 5. свойство системы сохранять исправное состояние.
8. Энтропия Шеннона – это … 1. мера неопределенности. 2. метод решения задачи. 3. информационная система. 4. фактор неопределенности. 5. закон распределения.
9. Вид хранения исходных данных в среде Статграфикс? 1. графический. 2. текстовый. 3. электронная таблица. 4. кодированный. 5. программа.
10. Реализация цели прогноза путем объединения конкретных прогнозов на основе принципов прогнозирования называется … 1. прогнозирующей системой. 2. сравнением прогнозов. 3. планированием эксперимента. 4. синтезом прогнозов. 5. анализом временных рядов.
11. Какая характеристика соответствует ППП Статграфикс? 1. отсутствует импорт данных. 2. интегрированная графика. 3. не интерактивная графика. 4. отсутствие статистической консультации. 5. немодульное исполнение.
12. Оценка достоверности и точности или обоснованности прогноза – это … 1. верификация. 2. апробация. 3. декорреляция. 4. кластеризация. 5. анализ временных рядов.
13. Какой модуль позволяет решать задачу одномерного прогнозирования с помощью ППП Статграфикс? 1. описания данных. 2. планирование эксперимента. 3. сравнение данных. 4. контроль качества. 5. анализ временных рядов.

14. Метод главных компонент позволяет… 1. сравнить данные. 2. построить регрессию. 3. снизить размерность данных. 4. выбрать закон распределения. 5. увеличить размерность данных.
15. Если коэффициент парной корреляции равен 0, то связь между двумя переменными… 1. отсутствует. 2. прямо пропорциональная. 3. обратно пропорциональная. 4. нелинейная. 5. оптимальная.
16. ПАТТЕРН – это … 1. метод прогнозирования. 2. вычислительный комплекс. 3. генератор идей. 4. база данных. 5. прогнозирующая система.
17. Функции предпочтения какого критерия изображены на рисунке? 1. S-критерия. 2. G-критерия. 3. MM- критерия. 4. Критерия азартного игрока. 5. BL-критерия
18. Какой критерий определяется данным соотношением? 1. минимаксный критерий. 2. критерий Сэвиджа. 3. критерий Ходжа-Лемана. 4. критерий Гурвица. 5. критерий азартного игрока.
19. Линии уровня (функции предпочтения) в прямоугольной системе координат для критерия Гермейера задаются… 1. равнобедренными трапециями. 2. параллельными прямыми. 3. прямоугольными треугольниками. 4. прямоугольными конусами. 5. равнобедренными треугольниками.
20. Какой вид критерия существует? 1. критерий с нормалями предпочтения. 2. критерий с плоскостями предпочтения. 3. критерий с прямыми предпочтения. 4. критерий с углом предпочтения. 5. критерий с кривыми предпочтения.

21. Коэффициент влияния определяется… 1. 2. . 3. . 4. . 5. .
22. Релевантность – это… 1. выявление важности одной альтернативы относительно другой. 2. мера беспорядка системы, состоящей из многих элементов. 3. количество параметров в системе. 4. мера характеристики предмета, обозначающая его ценность. 5. мера влияния параметров на результат решения.
23. Оценочная функция определяется… 1. значениями векторов зависимых переменных. 2. значениями векторов независимых и зависимых переменных. 3. Значениями векторов независимых переменных. 4. значениями модулей векторов независимых и зависимых переменных. 5. суммой векторов независимых и зависимых переменных.
24. Энтропия – это… 1. скорость реакции на внешнее воздействие. 2. степень определённости. 3. мера неопределенности сигнала, передаваемого случайным источником. 4. увеличение мощности сигнала, передаваемого случайным источником. 5. уменьшение мощности сигнала, передаваемого случайным источником.

25. Прогностический доверительный фактор для серии из ω реализаций с учётом вероятности α ошибки определяется как… 1. . 2. . 3. . 4. . 5. .
26. Гибкий критерий выглядит… 1. . 2. . 3. . 4. . 5. .
27. К обязательным условиям, требующим выполнения для гибкого критерия решений, не относится… 1. . 2. . 3. . 4. . 5. .
28. Количество условий выполнения гибкого критерия решений… 1. 3. 2. 4. 3. 6. 4. 5. 5. 7.
Адаптивный критерий Кофлера-Менга определяется выражением… 1. . 2. . 3. . 4. . 5. .

30. К свойствам кусочно-линейной информации не относится… 1. в вероятностном подпространстве этой информации существует реальная точка экстремума, координаты которой составляют матрицу. 2. возможность оценить степень объективности этой информации. 3. на основании априорного вероятностного распределения или априорного задания частотного распределения значений параметра по интервалам можно получить апостериорное вероятностное распределение. 4. априорное распределение кусочной информации представлено в форме части этого симплекса. 5. часть симплекса образует выпуклое многомерное пространство.
31. Общая теория систем - это наука, изучающая: 1. характеристики отдельных объектов и их элементов. 2. соотношении целого и частного в системах. 3. состояние и поведение совокупностей объектов и их элементов. 4. силы связей между элементами системы. 5. характеристики объектов.
32. Системный анализ – это методология: 1. поиска решений по управлению. 2. изучения и создания объектов как единой системы. 3. проектирования приборов анализа поведения систем. 4. контроля поведения систем и их элементов. 5. изучения межэлементных связей.
33. Определите правильную формулировку понятия «система» 1. набор элементов с установленными связями. 2. совокупность объектов, объединённых для достижения поставленной цели. 3. совокупность элементов, случайно выбранных из конечного множества объектов. 4. совокупность межэлементных связей. 5. множество объектов и их связей, ограниченное общим числом элементов.
34. Выберете правильную группу задач, относятся к общей теории систем 1. анализ и прогнозирование состояния систем в заданных условиях. 2. оценка процедур системных решений. 3. разработка методов поиска информации об объекте. 4. определение структуры внешней среды. 5. определение предельных условий состояния систем.

35. Определите правильную формулировку понятия «закрытая система» 1. система, представленная в виде «чёрного ящика». 2. система с ограничениями на состояние её элементов. 3. система, элементы которой не имею связи с внешней средой. 4. система, у которой хотя бы один элемент связан с внешней средой. 5. система, у которой все элементы связаны с внешней средой.
36. Дайте определение понятия «элемент системы» 1.часть системы, показатели которой не влияют на её состояние. 2. установленная часть подсистемы, не связанная с другими элементами. 3. часть системы, не входящая ни в одну подсистему. 4. внешнее возмущение. 5. часть системы, дальнейшее разделение которой приводит к разрушению общесистемных связей.
37. Дайте правильное определение понятия «межэлементная связь» системы 1. установленное направление и величина влияния одного элемента системы на другой. 2. связь между выходом объекта и внешней средой. 3. соединение двух элементов системы. 4. объединение двух или нескольких элементов системы. 5. связь между входом объекта и внешней средой.
38. Принцип «чёрного ящика» – это: 1. представление и изучение совокупности элементов по принципу открытой системы. 2. представление и изучение совокупности элементов по принципу закрытой системы. 3. представление и изучение не связной совокупности элементов. 4. представление и изучение случайной совокупности объектов. 5. представление и изучение совокупности элементов по принципу «вход-выход».
39. Выберите правильное определение понятия «структура системы» 1. порядок перечисления элементов системы. 2. порядок формирования системы из выделенного множества элементов и их взаимосвязей. 3. порядок оценки силы связей системы. 4. матрица межэлементных связей и их направлений в данной системе. 5. порядок перечисления межэлементных связей системы.

40. Под определением понятия «декомпозиция системы» понимается: 1. выбор и обоснование межэлементных связей. 2. поиск элемента с наибольшим числом связей. 3. формирование системы из выбранного множества элементов. 4. формулировка ограничений на параметры системы. 5. условное деление системы на её составляющие.
41. Эмерджентность - это: 1. несоответствие совокупных свойств множества микро - элементов системы и их связей свойствам системы в целом. 2. разнородность характеристик множества микро-элементов системы и их связей. 3. критерий сложности межэлементных связей. 4. соответствие совокупных свойств множества микро - элементов системы и их связей свойствам системы в целом. 5. критерий силы межэлементных связей.
42. Дана схема системы из двух параллельно соединённых элементов. Укажите правильную формулу определения состояния системы, если известны состояния их элементов Р1, Р2 1. Р = (1-Р1) (1- Р2). 2. Р = 1- Р1 Р2. 3. Р = 1- (1-Р1) (1- Р2). 4. Р = 1- (1-Р1 Р2). 5. Р = 1- (Р1 Р2)2.
43. Вероятность заданного уровня состояния качества системы «Р» с течением времени эксплуатации (использования) системы может: 1. только понижаться. 2. только возрастать. 3. быть постоянной. 4. быть равной «1». 5. быть равной «0».
44. Назовите все виды соединений элементов, принятые при проектировании систем 1. случайно-последовательные и прямые. 2. прямые, опосредованные, параллельные. 3. параллельные, последовательные и случайные. 4. параллельные, последовательные, параллельно-последовательные. 5. случайно-последовательные и параллельные.
45. Дана схема системы из двух последовательно соединённых элементов. Укажите правильную формулу определения состояния системы, если известны состояния их элементов Р1, Р2 1. Р = Р1 - Р2. 2. Р = Р1 / Р2. 3. Р = Р1 + Р2. 4. Р = Р1 = Р2. 5. Р = Р1 х Р2.
46.

47. Какой из приведенных ниже принципов является принципом построения моделей? 1. принцип ранжирования. 2. принцип приоритета функции над структурой. 3. принцип эксперимента. 4. принцип децентрализации. 5. принцип иерархии.
48.
49.
50.
51.
52.
53.
54.
55. Какой из приведенных ниже принципов является принципом построения моделей? 1. принцип осуществимости. 2. принцип предпочтения. 3. принцип рассмотрения совместно со связями со средой. 4. принцип глобальной цели. 5. принцип неопределенности.
56. Какой из приведенных ниже принципов является принципом построения моделей? 1. принцип ранжирования. 2. принцип приоритета функции над структурой. 3. принцип эксперимента. 4. принцип децентрализации. 5. принцип иерархии.
57. Как проверяется степень соответствия модели описываемому явлению? 1. эмпирической оценкой. 2. экспертной оценкой. 3. аддитивным анализом. 4. мультипликативным анализом. 5. последовательно-параллельной оценкой.
58. Что бы Вы отнесли к особенностям системного моделирования? 1. выдвижение гипотез при исследовании. 2. операциональное исследование. 3. использование алгоритмов, допускающих оперативную переналадку. 4. необходимость получения показателя эффективности системы. 5. учет характеристик системы на системном уровне.
59. Какие из перечисленных требований относятся к математическим моделям? 1. синхронность. 2. совместимость. 3. быстродействие. 4. эмерджентность. 5. адекватность.
60. На чем основывается оценка точности модели? 1. на методе максимального правдоподобия. 2. на реалистичности. 3. на совместимости. 4. на результативности. 5. на реализуемости.
61. Как можно оценить погрешность модели? 1. методом измерения предпочтений. 2. методом наименьших квадратов. 3. корреляционным анализом. 4. функционально-стоимостным анализом. 5. факторным анализом.
62. Как может быть оценена ошибка метода статистических испытаний? 1. степенью достоверности. 2. границами интервала, заданного ЛПР. 3. корреляционным анализом. 4. доверительной вероятностью. 5. статистической проверкой гипотез.
63. Какое распределение вероятностей положено в основу процедуры генерирования случайных чисел? 1. нормальное. 2. экспоненциальное. 3. равномерное. 4. логарифмическое. 5. показательное.
64. Выберите наиболее точное определение термина «Internet»: 1. совокупность всех веб-сайтов. 2. глобальная компьютерная сеть, построенная на использовании протокола IP и маршрутизации пакетов данных. 3. объединение всех веб-серверов. 4. услуга, предоставляемая компаниями-провайдерами для связи между компьютерами. 5. совокупность всех объединённых в сети компьютеров.
65. Узловой компьютер – это компьютер, который: 1. работает под операционной системой Windows Server. 2. имеет очень высокую производительность центрального процессора по сравнению с другими компьютерами в локальной сети. 3. выполняет определенные функции по запросам других компьютеров локальной сети. 4. постоянно подключен к Internet и предоставляет доступ в сеть для других компьютеров. 5. использует IP-адрес 127.0.0.1.
66. Сервер – это: 1. компьютер с самым высокопроизводительным в локальной сети центральным процессором. 2. компьютер с самым большим в локальной сети объёмом ПЗУ. 3. компьютер, выделенный и/или специализированный для выполнения определенных сервисных функций. 4. программа, распределяющая доступ к Internet для всех компьютеров в локальной сети. 5. компьютер, способный работать без монитора.
67. Дайте определение термину «программа-клиент» в программной концепции «клиент-сервер»: 1. Операционная система терминала. 2. Программа для обмена мгновенными сообщениями между пользователями терминалов. 3. Программа для доступа в интернет через сервер. 4. Программа для определения производительности сервера. 5. Программа, запрашивающая с сервера какие-либо данные, манипулирующая данными непосредственно на сервере, запускающая на сервере новые процессы и т.п.
68. Как расшифровывается DNS? 1. Digital Name System. 2. Direct Netwok System. 3. Digital Netwok System. 4. Domain Name System. 5. нет верного ответа.
69. IP-адрес - это: 1. Физический адрес сетевой платы компьютера в компьютерной сети. 2. Сетевой адрес узла в компьютерной сети, построенной по протоколу IP. 3. Сетевой адрес персонального компьютера, зависящий от выбора интернет-браузера. 4. Физический адрес, определяющий местоположение устройства, имеющего доступ в интернет. 5. Адрес сетевого принтера в локальной сети.

70. TCP/IP - это: 1. Протокол для передачи электронной почты и мгновенных сообщений. 2. Шина персонального компьютера, служащая для работы с сетью Internet. 3. Набор сетевых протоколов разных уровней модели сетевого взаимодействия, используемых в информационных сетях. 4. Основная характеристика сетевой платы персонального компьютера. 5. Сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в Internet.
71. HTTP – это: 1. протокол передачи данных. 2. домен верхнего уровня в сети Internet. 3. язык программирования для создания веб-страниц. 4. хостинг, где расположены интернет-сервера. 5. формальный заголовок адреса веб-страницы.
72. Что из перечисленного является IP-адресом версии 4? 1. 192.168.0.1. 2. fe80:0:0:0:200:f8ff:fe21:67cf. 3. 00-1D-3F-A2-48-56. 4. 2:466/466. 5. yandex.ru.
73. Какая из перечисленных программ не является интернет-браузером? 1. Netscape Navigator. 2. Internet Explorer. 3. Google Chrome. 4. The Bat! 5. Mozilla Thunderbird.
74. Как называется совокупность элементов (предметов любой природы), находящихся в отношениях и связях друг с другом? 1. система. 2. упорядоченный набор. 3. звено. 4. комплекс. 5. сочетание.
75. При объединении элементов в систему последняя приобретает специфические системные свойства, не присущие ни одному из элементов. Как называются эти свойства? 1. предсказуемость. 2. толерантность. 3. синергетичность. 4. эмерджентные. 5. управляемость.
76. К каким системам относятся системы со слабопредсказуемым поведением и способностью принимать решения? 1. к простым. 2. к смешанным. 3. к сложным. 4. к критическим. 5. к управляемым.
77. Как называется система целенаправленных действий, объединенных общим замыслом и единой целью? 1. стратегия. 2. операция. 3. тактика. 4. процесс. 5. управление.

78. Как называется мера степени соответствия реального результата операции требуемому? 1. критерий эффективности. 2. степень эффективности. 3. мера эффективности. 4. потенциальная эффективность. 5. показатель эффективности.
79. Как называется форма упорядочения элементов множества, то есть устранение неопределенности в выборе некоторого элемента или некоторого подмножества? 1. предпочтение. 2. толерантность. 3. симметричность. 4. ранжирование. 5. построение.
80. Чем определяется, прежде всего, выбор отношения для описания системы? 1. Предметной областью. 2. Внешними системами. 3. Целью анализа. 4. Предпочтением ЛПР. 5. Информационной средой задачи.
81. Какими свойствами обладает система предпочтений индивида на множестве D элементов выбора, если он умеет сравнить между собой любые два элемента и всегда вынести одно из трех альтернативных суждений: а) предпочтительнее ; б) и одинаково предпочтительны: в) предпочтительнее ? 1. устойчивостью. 2. эмерджентностью. 3. информативностью. 4. управляемостью. 5. свойством полноты.
82. Как называется способ, при котором ЛПР просит указать степень влияния изменения значения частного показателя эффективности на результат операции? 1. способ выражения предпочтения субъективными вероятностями. 2. способ выражения предпочтений коэффициентами важности. 3. способ попарного выражения предпочтения как доли относительной интенсивности. 4. способ попарного выражения предпочтения как доли суммарной интенсивности. 5. способ выражения предпочтений лингвистическими переменными.
83. Как распределены промежутки времени между событиями простейшего потока? 1. по экспоненциальному закону. 2. по равномерному закону. 3. по нормальному закону. 4. по логарифмическому закону. 5. по гипернормальному закону.

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между элементами исследуемых сложных систем - технических, экономических и т.д. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов. Проводится с использованием современных средств вычислительной техники. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития, технической системы, региона, коммерческой структуры и т.д. Поэтому истоки системного анализа, его методические концепции лежат в тех дисциплинах, которые занимаются проблемами принятия решений: теории операций и общей теории управления и системном подходе.

Целью системного анализа является упорядочение последовательности действий при решении крупных проблем, основываясь на системном подходе. В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы. Приемы и методы системного анализа направлены на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности.

Системный анализ базируется на ряде общих принципов, среди которых:

    принцип дедуктивной последовательности - последовательного рассмотрения системы по этапам: от окружения и связей с целым до связей частей целого (см. этапы системного анализа подробнее ниже);

    принцип интегрированного рассмотрения - каждая система должна быть неразъемна как целое даже при рассмотрении лишь отдельных подсистем системы;

    принцип согласования ресурсов и целей рассмотрения, актуализации системы;

    принцип бесконфликтности - отсутствия конфликтов между частями целого, приводящих к конфликту целей целого и части.

2. Применение системного анализа

Область применения методов системного анализа весьма широка. Существует классификация, согласно которой все проблемы, к решению которых можно применить методы системного анализа, подразделяются на три класса:

    хорошо структурированные (well-structured), или количественно сформулированные проблемы, в которых существенные зависимости выяснены очень хорошо;

    неструктурированные (unstructured), или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны;

    слабо структурированные (ill-structured), или смешанные проблемы, которые содержат как качественные элементы, так и малоизвестные, неопределенные стороны, которые имеют тенденцию доминировать.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Привлечение методов системного анализа для решения указанных проблем необходимо, прежде всего, потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределённости, которая обусловлена наличием факторов, не поддающихся строгой количественной оценке. В этом случае все процедуры и методы направлены именно на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределённости по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности. Специалисты только готовят или рекомендуют варианты решения, принятие же решения остаётся в компетенции соответствующего должностного лица (или органа).

Для решения слабо структурированных и неструктурированных проблем используются системы поддержки принятия решений.

Технология решения таких сложных задач может быть описана следующей процедурой:

    формулировка проблемной ситуации;

    определение целей;

    определение критериев достижения целей;

    построение моделей для обоснования решений;

    поиск оптимального (допустимого) варианта решения;

    согласование решения;

    подготовка решения к реализации;

    утверждение решения;

    управление ходом реализации решения;

    проверка эффективности решения.

Центральной процедурой в системном анализе является построение обобщённой модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным внешним воздействиям.

Исследования опираются на ряд прикладных математических дисциплин и методов, широко используемых в современной технической и экономической деятельности, связанной с управлением. К ним относятся:

    методы анализа и синтеза систем теории управления,

    метод экспертных оценок,

    метод критического пути,

    теория очередей и т. п.

Техническая основа системного анализа - современные вычислительные мощности и созданные на их основе информационные системы.

Методологические средства, применяемые при решении проблем с помощью системного анализа, определяются в зависимости от того, преследуется ли единственная цель или некоторая совокупность целей, принимает ли решение одно лицо или несколько и т. д. Когда имеется одна достаточно четко выраженная цель, степень достижения которой можно оценить на основе одного критерия, используются методы математического программирования. Если степень достижения цели должна оцениваться на основе нескольких критериев, применяют аппарат теории полезности, с помощью которого проводится упорядочение критериев и определение важности каждого из них. Когда развитие событий определяется взаимодействием нескольких лиц или систем, из которых каждая преследует свои цели и принимает свои решения, используются методы теории игр.

Несмотря на то, что диапазон применяемых в системном анализе методов моделирования и решения проблем непрерывно расширяется, он по своему характеру не тождествен научному исследованию: он не связан с задачами получения научного знания в собственном смысле, но представляет собой лишь применение методов науки к решению практических проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов.

Предисловие

1. Типология решений и целеполагание

2. Системный анализ проблем предприятия

3. Процесс принятия решений в малой группе

4. Риск групповых решений

5. Методы многокритериального выбора

6. Метод анализа иерархий

7. Теория игр при выборе решения

8. Принятие решений с помощью платежной матрицы

9. Человеческая система переработки информации и ее связь с принятием решений

Библиографический список


ПРЕДИСЛОВИЕ

Дисциплина "Управленческие решения" является одной из важнейших и обязательных дисциплин учебной программы подготовки бакалавров и специалистов в области экономики и менеджмента. Здесь фокусируются многие направления этой специальности, а именно: теория организации, основы менеджмента, исследование систем управления, прогнозирование развития, системный анализ проблемной ситуации.

Выбор рационального управленческого решения - необходимое условие эффективности любой деятельности. От обоснованности управленческих решений зависит эффективность системы менеджмента предприятия. Качество управленческих решений – основной фактор рационального использования ресурсов и повышения качества продукции.

Современная научная и учебная литература достаточно полно раскрывает теорию принятия решений. Однако многие идеи, подходы и методы разработки решений, излагаемые в литературе, не поясняются на практических примерах. Этот недостаток лишает возможности научиться самостоятельно применять на практике теоретические концепции.

Данное учебно-методическое пособие включает девять лекционно-практических разделов, посвященных разработке и выбору управленческих решений.

Непосредственной основой для его написания стало содержание конспекта лекций “Разработка управленческого решения”. Новая расширенная редакция имеет практическую направленность, так как почти все изложенные методы и технологии сопровождаются конкретными примерами принятия решений.

При написании использовались современная научная и учебно-методическая литература по рассматриваемым вопросам, а также результаты научных исследований преподавателей, аспирантов и студентов кафедры Экономики и менеджмента

В первую очередь, пособие адресовано студентам специальностей экономика и менеджмент, но может быть полезно всем желающим овладеть методикой принятия объективного рационального решения проблем. Вследствие универсальности применяемых методологических подходов основные положения учебно-методического пособия могут быть использованы специалистами различных отраслей экономики.

Профессор, д-р экон. наук Э.Н.Кузьбожев


1. Типология решений и целеполагание


"Решение" в управленческой литературе понимается как процесс, акт выбора, результат выбора. Решение как процесс характеризуется тем, что он протекая во времени и осуществляется в несколько этапов: подготовка, принятие и реализация решения. Как акт выбора, решение характеризуется как выбор альтернативы, осуществляемый индивидуальным или групповым лицом, принимающим решение (ЛПР) с помощью определенных правил. Решение как результат выбора представляет собой предписание к действию.

В менеджменте (в процессном подходе) принятие решений рассматривается как связующий процесс, необходимый для выполнения всех управленческих функций: планирования, организации, мотивации и контроля. Основное содержание принятия решений – выбор из альтернатив, выбор того, что и как планировать организовывать, мотивировать и контролировать.

В отечественной и зарубежной литературе предприняты многочисленные попытки классифицировать управленческие решения по разнообразным основаниям.

Дадим краткую характеристику тех видов решений, которые наиболее характерны для управленческой практики в сфере материального производства.

Учитывая, что подготовка и принятие хозяйственных решений - основная обязанность каждого руководителя, а к разработке решений часто привлекаются и другие категории работников, целесообразно начать классификацию управленческих решений в разрезе субъектов управления. В связи с этим различаются решения единоначальника, коллегиального органа и коллективные решения.

В управлении производством действует принцип единоначалия, и, в итоге, персональную ответственность за все решения несет единоначальник. Однако встречаются решения, которые затрагивают интересы и деятельность всего производственного коллектива и при этом на длительный период. Поэтому они обычно вырабатываются при широком участии всех работников предприятия. Такие решения называются коллективными (например, разработка и утверждение коллективного договора). Решения, в разработке и принятии которых участвует определенный совещательный орган (совет директоров, производственное совещание, техсовет), являются коллегиальными. Эти решения принимаются по наиболее важным перспективным вопросам технической политики, экономики, а также организационным вопросам, требующим компетентного обсуждения на коллегии или собрании совещательного органа.

Наконец, по ряду важных тактических, но предшествующих реализации перспективных решений, единоначальником является руководитель. Руководитель должен уметь самостоятельно принимать решения. Как правило, он оставляет за собой самые важные, ключевые, а не частные и локальные решения.

Решения различаются и по объекту управления. В зависимости от степени охвата объекта выделяют общие, частные и локальные решения.

Общие (глобальные) решения охватывают всю управляемую систему. Принятие подобных решений требует глубокого и всестороннего изучения деятельности объекта как целостной системы. Частные решения касаются отдельных сторон деятельности объекта. Обычно они не требуют предварительного серьезного анализа работы всего объекта. Локальные решения отличаются от частных тем, что имеют отношение к конкретному элементу системного объекта (например, к одному цеху предприятия).

По длительности действия, масштабу и характеру целей решения подразделяют на стратегические и тактические.

Стратегические решения масштабны и рассчитаны на большой срок. Тактические решения обычно краткосрочны и принимаются для выполнения частных и локальных задач.

По степени обязательности различают категоричные и рекомендательные решения.

По степени полноты имеющейся информации решения могут приниматься в условиях определенности и неопределенности. В свою очередь, каждая из этих групп решений может быть подразделена на подгруппы. Например, в зависимости от степени неопределенности различают стандартные решения , решения при слабой неопределенности , значительной и большой неопределенности.

По характеру информации выделяют программируемые и непрограммируемые решения. К программируемым относятся стандартные и повторяющиеся решения, к непрограммируемым- разовые, слабоструктурированные решения, требующие творческого подхода, в значительной мере зависящие от здравого смысла и интуиции.

Программированное решение - это результат реализации определенной последовательности действий. Такие решения программируются под ситуации, повторяющиеся регулярно. Наличие банка подобных решений экономит время для управления периодически возникающими ситуациями. Непрограммируемые решения требуются при возникновении новых ситуаций. Поскольку в этих случаях заранее невозможно составить конкретную последовательность необходимых шагов, руководитель должен разработать процедуру принятия решения.

Целеполагание при принятии решений

Почти всегда при анализе действительности управляющий создает в своем сознании некую иерархическую структуру. Иерархия есть определенный тип системы, основанный на предположении, что элементы системы могут группироваться (уровни, кластеры, страты).

Пример. Человек намерен выйти в отпуск и куда-либо выехать. Турбюро предоставило ему список, включающий восемь предложений. Человек должен принять решение. Он начинает с того, что располагает эти альтернативы в иерархическом порядке, согласно схеме (рис. 1) . Прежде всего он выделяет два подмножества альтернатив: относящихся к морскому побережью; к горной местности. Затем каждое подмножество подвергается дальнейшему делению. В итоге возникает иерархия.

Гданьское

Побережье

Свиноуйсце

Щецинское

Мензиздруй

Закопане

Берутовице

Рис. 1. Пример иерархизации множества альтернатив

После иерархизации задача радикально меняется. Теперь решатель вместо выбора одного элемента из восьми возможностей должен принять три последовательных решения. На каждом этапе выбирается одна из двух альтернатив. Например, вначале решается, куда ехать -на море или в горы.

Закономерен вопрос, для чего нужна иерархия?

Предполагается, что решатели создают иерархию главным образом для того, чтобы уменьшить познавательное усилие и облегчить себе решение. Возможности человека относительно ограничены; он способен одновременно обрабатывать лишь несколько элементов. С помощью иерархии решатель уже не должен выбирать одну из восьми альтернатив. Вместо одного решения он принимает три, поочередно; в каждом случае- одну из двух.

Основной задачей в иерархии является оценка высших уровней исходя из взаимодействия разных уровней, а не из непосредственной зависимости от элементов на этих уровнях. Точные методы построения иерархий постепенно появляются в естественных и общественных науках, и особенно в задачах общей теории систем, связанных с планированием и построением социальных систем. Путем иерархической композиции, по сути, уклоняются от непосредственного сопоставления большого и малого. Концептуально, наиболее простая иерархия- линейная.

Преимущества иерархий в следующем.

* Иерархическое представление системы можно использовать для описания того, как влияют изменения приоритетов на верхних уровнях на приоритеты элементов нижних уровней.

* Иерархии предоставляют более подробную информацию о структуре и функциях системы на нижних уровнях и обеспечивают рассмотрение целей на высших уровнях.

* Естественные системы, составленные иерархически, строятся эффективнее, чем системы, собранные в целом.

* Иерархии устойчивы и гибки. Устойчивы в том смысле, что малые изменения вызывают малый эффект. Гибкие в том смысле, что добавления к хорошо структурированной иерархии не разрушают ее характеристик.

Практикам пока не известны стандартные процедуры генерирования целей для включения в иерархию. Обычно эта работа начинается с изучения литературы и обогащения мыслями, и часто, знакомясь с чужими работами, аналитики как бы проходят через стадию мозгового штурма для составления перечня всех концепций, существенных для задачи.

Следует помнить, что главные цели устанавливаются на вершине иерархии; их подцели - непосредственно под ними. На самом нижнем уровне размещаются возможные ресурсы. Для удобства компоновки (на схеме) названий целей, подцелей (факторов), ресурсов можно использовать карточки с их формулировками.

Ресурсы системы - это все то, что может использоваться и варьироваться для достижения желаемых целей и находиться внутри системы. В понятие “ресурсы” в широком смысле включаются не только материальные объекты, расход или функционирование которых могут быть охарактеризованы денежными или иными показателями, но и возможности типа “уровень образования или творческие возможности персонала, моральное состояние и желание добиваться поставленных целей и т.п.”

При характеристике ресурсов системы надо оценивать не только их наличие, но также степень и направления использования, принимая во внимание, что использование ограниченных ресурсов на каком - то одном участке означает потерянные возможности от применения этого курса на другом участке.

Еще более важное значение имеет описание возможностей увеличения ресурсов, особенно в будущих периодах. Например, через использование технических нововведений, осуществление исследований и разработок, повышение уровня профессиональной подготовки и образования персонала, а также определенные действия организационного характера, направленные, например, на увеличение бюджетных ассигнований на цели системы и т.п.

Основной метод структуризации системы целей - это метод построения дерева целей, базирующийся на принципах дедуктивной логики.

При построении дерева целей должны соблюдаться:

* Соподчиненность, полнота, согласованность и непротиворечивость целей в “дереве”. Это обеспечивается методикой его построения, основанной на последовательном развертывании генеральной цели развития комплекса на множество определяющих ее подцелей.

* Определенность, обеспечиваемая возможностью оценки достижения целей в количественной форме.

* Конкретность цели должна выражаться в конкретных показателях.

* Реальность, т.е. имеющиеся средства и ресурсы должны быть достаточными для выполнения цели в установленные сроки.

* Комплексность, обеспечивающая единство экономических, социальных, научно технических и производственных требований к цели.

Цель должна излагаться однозначно, формулироваться набором ключевых слов без излишней детализации. Формулировка цели может включать время ее достижения, быть адресной, характеризовать ее роль и место в системе целей, необходимость согласования с другими целями, указывать возможные пути и средства достижения, отражать источник (основание) ее возникновения. Формулировки целесообразно приводить в терминах событий, состояний, задач, достижение которых ожидается в будущем (например, «создать», «расширить», «увеличить»).


Системный анализ проблем предприятия

Системный анализ как методология применяется специалистами аналитиками при выявлении проблем организации. Российскими экономистами в прикладном плане он широко начал применяться в 70-х годах. Существует много точек зрения о последовательности системного анализа в решении организационных проблем. Иногда содержательно словосочетание системный анализ подменяется другими системными дисциплинами (например, комплексный системный анализ хозяйственной деятельности предприятия, либо экономический анализ).

Экономический анализ хозяйственной деятельности- это всего лишь составная часть процесса системного анализа и далеко не главная. Задача экономического анализа - поиск резервов повышения эффективности организации. Главная задача системного анализа - “вскрытие” проблемы , стоящей перед организацией, поиск альтернатив решения этой проблемы разработка программ мероприятий и организация более совершенного процесса, переводящего системный объект в новое состояние (уже не проблемное).

Проблема - это разновидность вопроса , имеющего конкретно поставленную цель. В момент постановки вопроса способы достижения целей неизвестны. Как только проблема однажды будет решена, вопрос переводится в состояние “задачи”, решаемой стандартными способами (например, методами исследования операций).

Из этого определения следует, что системный анализ противопоставляется исследованию операций . Исследование операций осуществляется в отношении стандартных вопросов, а системный анализ - только в отношении слабоструктурированных проблемных вопросов.

Считается что современная российская практика системного анализа проблем базируется на американском опыте ППБ (Планирование, Программирование, Разработка бюджета). Но не лишне знать, что некоторые российские специалисты утверждают, будто американская методология ППБ основана на опыте составления первого российского государственного плана (ГОЭЛРО).

Известно около пятидесяти вариантов последовательности проведения системного анализа. Но в каждом из них можно обнаружить несколько общих элементов. Это позволяет дать рекомендации о типовой последовательности.

Первый этап. Вначале ставится цель организации. Если цель известным арсеналом средств достичь нельзя, то констатируется наличие проблемной ситуации. Дается название проблемы.

Второй этап. Главная цель разбивается на составные части в виде иерархии (целеполагание).

Третий этап. Проводится диагностирование. Именно этот этап и является предметом “исследования систем управления”. Выявляются резервы и формулируются альтернативы достижения главной цели. Наименьшее число альтернатив-2 (бинарная ситуация). В практике решения сложных проблем стремятся к числу сформулированных альтернатив от 3 до 7.

Четвертый этап. Разрабатываются критерии и подбирается одна (максимум - две) наиболее выгодные альтернативы. Для каждой рациональной альтернативы разрабатывается программа мероприятий. Обычно мероприятия программы делят на три группы: организационные; технические; информационные.

На нижнем уровне дерева целей можно видеть эти три группы мероприятий. Информационные мероприятия занимают особое место в решении проблем, так как обеспечивают создание информационных технологий для поддержки управленческого решения. В американских учебниках по менеджменту это отнесено к функции коммуникации.

Компьютерная информационная система помогает готовить решение, но само решение в отношении слабоструктурированной проблемы принимает человек (решатель, ЛПР). После того, как программа разработана, создают условия для ее реализации, в т.ч. разрабатывают планы по этой реализации. Отсюда понятно, что в функцию планирования помимо самого процесса планирования производства также входит планирование организационно-технических мероприятий и их осуществление. Информационные системы связывают начало и конец управленческого цикла.

Практические аспекты системного анализа

решения проблемы организации

Рассмотрим последовательность системного анализа применительно к решению конкретной проблемы, стоящей перед предприятием: “повысить производительность труда на промышленном предприятии на “n” процентов”.

Предприятие сформулировало перед экспертно-консультационной фирмой конкретный вопрос: “помочь в поиске резервов производства его организации и управлении, чтобы обеспечить к концу следующего года рост производительности труда работников основного производства на “n” процентов”. Консультационная организация направила на это предприятие специалистов разного профиля для диагностического обследования и выявления структуры поставленного вопроса. Изучаемое предприятие является ведущим в данном регионе по производству строительных деталей (сборного железобетона). В ходе обследования перед исследовательской организацией стояли следующие вопросы:

* Разработать методологию анализа и решения проблемы увеличения производительности труда на основе интенсивных факторов технического и социального характера.

* Предложить руководству предприятия практически реализуемый метод формирования рационального варианта, программу развития, не противоречащую традиционному подходу, ранее применявшемуся на данном предприятии.

* Определить совокупность факторов роста производительности труда на основе социологического исследования.

В процессе исследования была составлена последовательность решения поставленного проблемного вопроса. Она включала в себя 7 этапов: формулирование проблемы; структуризация исследования; составление моделей объекта управления; прогнозирование будущих состояний объектов управления; диагностирование проблемы и формулирование альтернатив развития предприятия; отбор альтернатив; реализация программы мероприятий.

Охарактеризуем конкретно каждый этап.

1.В первоначальном виде название проблемы обычно берут в том виде, в каком она изложена заказчиком предприятия. В последующем может выясниться, что первоначальная формулировка не выдерживает никакой критики и поэтому уточняется или формулируется совершенно другим образом.

2.Структуризация исследования задается с помощью иерархии целей.

Воспользуемся в нашем случае “типовым деревом”. Обратимся, в частности, к нижнему его уровню (рис. 2).

Системный анализ с практической точки зрения представляет собой универсальную методику решения сложных проблем произвольной природы. Ключевым понятием в данном случае является понятие «проблемы», которое можно определить как «субъективное отрицательное отношение субъекта к реальности». Соответственно этап выявления и диагностики проблемы в сложных системах является наиболее важными, т. к. определяет цели и задачи проведения системного анализа, а также методы и алгоритмы, которые будут применяться в дальнейшем при поддержке принятия решений. В тоже время этот этап является наиболее сложным и наименее формализованным.

Анализ русскоязычных трудов по системному анализу позволяет выделить два наиболее крупных направления в данной области, которые можно условно назвать рациональный и объективно-субъективный подходы.

Первое направление (рациональный подход) рассматривает системный анализ как набор методов, и в том числе методов, основанных на использовании ЭВМ, ориентированных на исследование сложных систем. При таком подходе наибольшее внимание уделяется формальным методам построения моделей систем и математическим методам исследования системы. Понятия «субъект» и «проблема» как таковые не рассматриваются, а вот понятие «типовых» систем и проблем как раз встречается часто (система управления - проблема управления, финансовая система - финансовые проблемы и др.).

При таком подходе «проблема» определяется как несоответствие действительного желаемому, т. е. несоответствие между реально наблюдаемой системой и «идеальной» моделью системы. Важно отметить, что в данном случае система определяется исключительно как та часть объективной реальности, которую необходимо сравнить с эталонной моделью.

Если опираться на понятие «проблемы», то можно сделать заключение, что при рациональном подходе проблема возникает только у системного аналитика, который имеет некую формальную модель некоторой системы, находит данную систему и обнаруживает несоответствие модели и реальной системы, что и вызывает его «отрицательное отношение к реальности». Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. - Л.: ЛПИ, 2008. - 83 с.

Очевидно, что существуют системы, организация и поведение которых строго регламентирована и признана всеми субъектами - это, например, юридические законы. Несоответствие модели (закона) и действительности в данном случае является проблемой (правонарушением), которую нужно решить. Однако для большинства искусственных систем строгих регламентов не существует, а субъекты имеют свои личные цели по отношению к подобным системам, редко совпадающие с целями других субъектов. Более того, конкретный субъект имеет свое собственное представление о том, частью какой системы он является, с какими системами он взаимодействует. Понятия, которыми оперирует субъект, могут кардинально отличаться от «рациональных» общепринятых. Например, субъект может вообще не выделять из окружающей среды систему управления, а использовать некую только ему понятную и удобную модель взаимодействия с миром. Получается, что навязывание общепринятых (даже если и рациональных) моделей может привести к возникновению «отрицательного отношения» у субъекта, а значит к появлению новых проблем, что в корне противоречит самой сути системного анализа, который предполагает улучшающее воздействие - когда хотя бы одному участнику проблемы станет лучше и никому не станет хуже.

Очень часто постановку задачи системного анализа в рациональном подходе выражают в терминах задачи оптимизации, т. е. идеализируют проблемную ситуацию до уровня, позволяющего использовать математические модели и количественные критерии для определения наилучшего варианта разрешения проблемы.

Как известно для системной проблемы не существует какой-либо модели, исчерпывающе устанавливающей причинно-следственные связи между ее компонентами, потому оптимизационный подход кажется не вполне конструктивным: «…теория системного анализа исходит из отсутствия оптимального, абсолютно лучшего варианта разрешения проблем любой природы… предлагается итеративный поиск реально достижимого (компромиссного) варианта разрешения проблемы, когда желаемым можно поступиться в угоду возможному, а границы возможного могут быть существенно расширены за счет стремления достичь желаемого. Тем самым предполагается использование ситуативных критериев предпочтительности, т. е. критериев, которые не являются исходными установками, а вырабатываются в ходе проведения исследования…».

Другое направление системного анализа - объективно-субъективный подход, основанное на работах Акоффа, ставит понятие субъекта и проблемы во главу системного анализа. По сути, в данном подходе мы включаем субъекта в определение существующей и идеальной системы, т.е. с одной стороны системный анализ исходит из интересов людей - вносит субъективную составляющую проблемы, с другой стороны исследует объективно наблюдаемые факты и закономерности.

Вернемся к определению «проблемы». Из него, в частности, следует, что когда мы наблюдаем нерациональное (в общепринятом смысле) поведение субъекта, и субъект не имеет отрицательного отношения к происходящему, то нет и проблемы, которую нужно было бы решать. Данный факт хотя и не противоречит понятию «проблемы», но в определенных ситуациях исключать возможность существования объективной составляющей проблемы нельзя.

Системный анализ имеет в своем арсенале следующие возможности решить проблему субъекта:

* вмешаться в объективную реальность и, устранив объективную часть проблемы, изменить субъективное отрицательное отношение субъекта,

* изменить субъективное отношение субъекта, не вмешиваясь в реальность,

* одновременно вмешаться в объективную реальность и изменить субъективное отношение субъекта.

Очевидно, что второй способ не решает проблему, а всего лишь устраняет ее влияние на субъект, а значит объективная составляющая проблемы остается. Справедлива и обратная ситуация, когда объективная составляющая проблемы уже проявилась, но субъективное отношение еще не сформировано, либо по ряду причин оно пока не стало отрицательным.

Вот несколько причин, почему у субъекта может отсутствовать «отрицательное отношение к реальности»: Директор, С. Введение в теорию систем / С. Директор, Д. Рорар. - М.: Мир, 2009. - 286 с.

* имеет не полную информацию о системе или использует ее не полностью;

* меняет оценку взаимоотношений с окружающей средой на психическом уровне;

* прерывает взаимоотношение с окружающей средой, которая вызывала «отрицательное отношение»;

* не верит информации о существовании проблем и их сущности, т.к. полагает, что сообщающие ее люди очерняют его деятельность или преследуют свои корыстные интересы, а может быть и потому, что просто лично не любит этих людей.

Следует помнить о том, что при отсутствии отрицательного отношения субъекта объективная составляющая проблемы остается и в той или иной степени продолжает влиять на субъект, либо проблема может существенно обостриться в будущем.

Поскольку выявление проблемы требует анализа субъективного отношения, то этот этап относится к неформализуемым этапам системного анализа.

Каких-либо эффективных алгоритмов или приемов на настоящий момент не предложено, чаще всего авторы работ по системному анализу полагаются на опыт и интуицию аналитика и предлагают ему полную свободу действий.

Системный аналитик должен обладать достаточным набором инструментов для описания и анализа той части объективной реальности, с которой взаимодействует или может взаимодействовать субъект. Инструменты могут включать методы экспериментального исследования систем и их моделирования. С повсеместным внедрением современных информационных технологий в организациях (коммерческих, научных, медицинских и др.) почти каждый аспект их деятельности регистрируется и сохраняется в базах данных, которые уже сегодня имеют очень большие объемы. Информация в подобных базах данных содержит детальное описание, как самих систем, так и истории их (систем) развития и жизни. Можно сказать, что сегодня при анализе большинства искусственных систем аналитик вероятнее столкнется с недостатком эффективных методов исследования систем, нежели с недостатком информации о системе.

Однако субъективное отношение должен сформулировать именно субъект, а он может не обладать специальными знаниями и потому не способен адекватно интерпретировать результаты исследования, проведенного аналитиком. Поэтому знания о системе и прогнозные модели, которые в итоге получит аналитик, должны быть представлены в явном, доступном к интерпретации виде (возможно на естественном языке). Такое представление можно назвать знаниями об исследуемой системе.

К сожалению эффективных методов получения знаний о системе на текущий момент не предложено. Наибольший интерес представляют модели и алгоритмы Data Mining (интеллектуальные анализ данных), которые в частных приложениях используются для извлечения знаний из «сырых» данных. Стоит отметить, что Data Mining является эволюцией теории управления баз данными и оперативного анализа данных (OLAP), основанной на использовании идеи многомерного концептуального представления.

Но в последние годы в связи с нарастающей проблемой «перегрузки информацией», все больше исследователей используют и совершенствуют методы Data Mining для решения задач извлечения знаний.

Широкое применение методов извлечения знаний весьма затруднено, что с одной стороны связано с недостаточной эффективностью большинства известных подходов, которые базируется на достаточно формальных математических и статистических методах, а с другой - с трудностью использования эффективных методов интеллектуальных технологий, которые не имеют достаточного формального описания и требуют привлечения дорогих специалистов. Последнее можно преодолеть, используя перспективный подход к построению эффективной системы анализа данных и извлечения знаний о системе, основанный на автоматизированном генерировании и настройке интеллектуальных информационных технологий. Такой подход позволит, во-первых, за счет применения передовых интеллектуальных технологий существенно повысить эффективность решения задачи извлечения знаний, которые будут предъявляться субъекту на этапе выявления проблемы при системном анализе. Во-вторых, исключить потребность в специалисте по настройке и использования интеллектуальных технологий, т. к. последние будут генерироваться, и настраиваться в автоматическом режиме. Берталанфи Л. Фон. История и статус общей теории систем / Берталанфи Л. Фон // Системные исследования: ежегодник. - М.: Наука, 2010. - C. 20 - 37.

  • СИСТЕМА УПРАВЛЕНИЯ
  • РАЗВИТИЕ
  • ДЕЯТЕЛЬНОСТЬ ОРГАНИЗАЦИИ
  • СИСТЕМНЫЙ АНАЛИЗ
  • МЕТОД

Системный анализ представляет собой комплекс исследований, направленных на выявление общих тенденций и факторов развития организации и развития деятельности по улучшению системы управления и всей производственной и хозяйственной деятельности организации. Системный анализ позволяет выявить целесообразность создания или совершенствования организации. В данной статье отражена конечная практическая цель системного анализа - разработка и внедрение выбранной эталонной модели системы управления.

  • Профессиональная мотивация как фактор повышения эффективности системы управления персоналом
  • Подходы к оптимальному выбору пути профессионального развития

Термин «система», определяемый в философском плане как целое, состоящее из частей, которое используется для формирования оценок для принятия решений в условиях определенности, а также в условиях неопределенности. Понятие «системный анализ» (в ряде случаев - «анализ систем») в настоящее время широко используется в теории и практике научных исследований. Это совокупность методов и средств, используемых при исследовании и конструировании сложных и сверхсложных объектов, прежде всего методов выработки, принятия и обоснования решений при проектировании, создании и управлении социальными, экономическими, человеко-машинными и техническими системами.

Системный анализ как дисциплина сложился в результате потребности изучать и проектировать большие (крупномасштабные) и трудные системы, управлять ими в критериях неполноты информации, нехватки ресурсов и недостатка времени. В системном анализе рассматриваются не всевозможные, а как раз большие и трудные системы. Общепризнанной границы, делящей большие и трудные системы, нет. Отмечается, что термин «большая система» характеризует многокомпонентные системы, включающие важное количество составляющих с однотипными многоуровневыми связями. Большие системы - это пространственно-распределённые системы высочайшей степени трудности, в которых подсистемы (их составные части) еще относятся к категориям трудных. Дополнительными признаками, характеризующими большую систему, являются:

  • большие размеры;
  • сложная иерархическая структура;
  • циркуляция в системе больших информационных, энергетических и материальных потоков;
  • высокий уровень неопределённости в описании системы.

В собственную очередность, слово «сложная система» определяет структурно и функционально трудные многокомпонентные концепции с огромным количеством взаимозависимых и взаимодействующих составляющих разного вида и с множественными и неоднородными взаимосвязями среди них. Непростые концепции различаются многомерностью, разнородностью текстуры, разнообразием природы компонентов и взаимосвязей, организационной разносопротивляемостью и разночувствительностью к влияниям, асимметричностью возможных возможностей реализации многофункциональных и дисфункциональных перемен. При этом каждый из компонентов такой системы способен быть в виде системы (подсистемы). К сложной можно отнести систему, обладающую по крайней мере одним из следующих признаков:

  • система в целом обладает свойствами, которыми не обладает ни один из составляющих её элементов;
  • систему можно разделить на подсистемы и изучать каждую из них отдельно;
  • система функционирует в условиях существенной неопределённости и воздействия среды на неё, что обусловливает случайный характер изменения её показателей;
  • система осуществляет целенаправленный выбор своего поведения.

Вопрос управления трудными концепциями и является главное содержание задач системного анализа. С целью этого для того чтобы успешно справиться с данной задачей, следует исследовать предмет управления - в таком случае имеется сама концепция, а кроме того определить цель управления - узнать нужное положение концепции, в таком случае имеется положение, к который она обязана стремиться. Способы и операции целого рассмотрения ориентированы в выявление целей, вынесение других альтернатив решения проблем, выявление масштабов неопределённости согласно любому с вариантов и сравнение вариантов согласно этим либо другим аспектам эффективности, а кроме того связанных организационных задач.

Основной проблемой системного анализа считается решение проблемных ситуации, появившихся перед объектом проводимого системного изучения. Системный анализ занимается исследованием проблематичной ситуации, выяснением ее факторов, выработкой вариантов ее устранения, принятием решения и системой последующего функционирования концепции, позволяющего проблематичную обстановку. Первоначальным этапом каждого целого изучения считается исследование предмета проводимого системного анализа с дальнейшей его формализацией. На данном этапе образуются проблемы, в корне отличающие методологию системных изучений с методологии прочих дисциплин, а непосредственно, в системном анализе принимается решение двуединая цель. С одной стороны, следует формализовать объект системного изучения, с другой стороны, формализации подлежит процедура исследования системы, процесс постановки и решения проблемы.

Следующей важной задачей системного анализа является проблема принятия решения. Применительно к задачам исследования, проектирования и управления сложными системами, включающими в себя большое количество элементов и подсистем, проблема принятия решения связана с выбором определённой альтернативы развития системы в условиях различного рода неопределённости. Неопределённость может быть обусловлена наличием множества факторов, не поддающихся точной оценке - воздействием на систему неизвестных факторов, многокритериальностью задач оптимизации, недостаточной определённостью целей развития систем, неоднозначностью сценариев развития системы, недостаточностью априорной информации о системе, воздействием случайных факторов в ходе динамического развития системы и прочими условиями.

Иной значимой проблемой системного анализа считается изучение, исследование и создание целей (формулирование, структуризация либо декомпозиция целевых строений, программ и планов, а кроме того взаимосвязей среди ними). Данное часто оказалось наиболее сложной проблемой, нежели дальнейший подбор наилучшего постановления. В данном значении системный анализ в некоторых случаях устанавливают равно как методологию изучения направленных систем. Построение цели при постановлении вопросов целого рассмотрения считается одной с основных процедур, вследствие того то что задача считается предметом, характеризующим постановку задачи системных исследований.

Важное место в системном анализе занимают и задачи организации, в том числе проблемы управления в иерархических системах, выбор оптимальной структуры, оптимальных режимов функционирования, оптимальной организации взаимодействия между подсистемами и элементами и другие организационные задачи. Выявление и решение подобных проблем может быть успешно решено при совместной работе системных аналитиков и специалистов в соответствующей отрасли исследования.

В системном анализе используется нынешний математический аппарат и вычислительные системы, но с целью отображения сложных систем, в этом количестве прогнозирования их поведения, как оказалось невозможным ссылаться только лишь в строгие точные способы. По этой причине в целом рассмотрении обширно применяются неофициальные операции, при этом одной с центральных методологических трудностей целого рассмотрения, образующейся при исследовании сложных систем, считается соединение формальных и неформальных способов рассмотрения и синтеза. Главным инструментом, обеспечивающим данное объединение, считаются имитационные модели, созданные присутствие помощи методов компьютерного прогнозирования.

Современный системный анализ:

  • устанавливает причинно-следственные связи, которые повлияли на возникновение проблемы;
  • анализирует варианты разрешения системных проблем с учетом ограничений, рисков, неопределенных условий среды;
  • организует междисциплинарные научные и прикладные исследования;
  • дает обоснованные рекомендации по оптимальному выбору или рациональной линии поведения в сложных управленческих ситуациях;
  • использует методы моделирования для изучения проблем.

Системный анализ применяется, главным образом, к исследованию искусственных систем (социальных, экономических, организационных, технических, человеко-машинных и тому подобных), причём в таких системах важная роль принадлежит деятельности человека. Наиболее широкое распространение системный анализ получил в теории и практике управления - при выработке, принятии и обосновании решений, связанных с проектированием, созданием и управлением сложными, многоуровневыми и многокомпонентными искусственными системами.

Методы системного анализа направлены на формулирование проблемы, выявление целей, выдвижение альтернативных вариантов решения проблем, выявление масштабов неопределённости по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности, а также принятия решений и связанных организационных задач. В общем случае при рассмотрении существующей системы и процесса её функционирования выявляется проблемная ситуация как несоответствие существующего положения дел требуемому. Для разрешения проблемной ситуации проводится системное исследование при помощи методов декомпозиции , анализа и синтеза системы. Моделирование системы, то есть реализация системы в виде модели, позволяет провести оценку степени снятия проблемной ситуации. Общий подход к разрешению проблемных ситуаций, применяемый в рамках системного анализа, представлен на рисунке 1.

Рисунок 1. Системный подход к решению проблемы

И так, системный анализ используют для выяснения причин существующих сложностей, постановки целей, выработки методов и вариантов устранения проблем. Он выступает в роли организатора и координатора. Опирается на междисциплинарный подход, с помощью которого эффективно объединяет и концентрирует усилия группы специалистов на решении конкретной проблемы. Системное объединение достижений различных областей знаний, позволяет решать такие проблемы, которые не могут быть разрешены в рамках отдельных дисциплин и частных подходов.

Список литературы

  1. Демидова, Л. А. Принятие решений в условиях неопределенности / Л. А. Демидова, В. В. Кираковский, А. Н. Пылькин. - 2-е изд., перераб. - М. : Горячая линия-Телеком, 2015. - 283 с. : ил.
  2. Митрофанова Я. С. Управление информационной системой предприятия на основе модели ITIL/ITSM // Вестник Поволжского государственного университета сервиса. Серия Экономика. №3(17). - Тольятти: Изд-во ПВГУС, 2011. - С. 134-138.
  3. Митрофанова Я.С. Моделирование системы управления информатизацией учебного процесса в вузе // Материалы II Международной научно-практической конференции «Информационные технологии в гуманитарном образовании». – Пятигорск, 2009. – С. 315-321.
  4. Митрофанова Я.С. Управление информационными рисками предприятия // Вестник Поволжского государственного университета сервиса. Серия: Экономика. - 2013. - № 4 (30). – С.132-135. – Тольятти: ПВГУС.
  5. Обзор методов принятия решений при разработке сложных технических систем / С. С. Семенов [и др.] // Надежность. - 2014. - № 3. - С. 72-84.