Оао троицкий йодный завод. Из чего делают йод? Переработка природных накопителей йода Из чего и как получают йод

Йод, подобно другим ценным элементам, добывают в промышленных масштабах. Уровень мировой добычи йода приближается к уровню добычи серебра и ртути. Следует отметить, что в виде простого вещества йод практически не встречается, в основном его добывают из химических соединений. Существуют следующие способы добычи йода:

1. Переработка природных накопителей йода - морских водорослей и получение йода из их золы.

В тонне высушенной морской капусты (ламинарии) содержится до 5 кг йода, в то время как в тонне морской воды его всего лишь 20-30 мг. До 60-х годов XIX столетия водоросли были единственным источником промышленного получения йода. В России вплоть до 1915 года своего йода не было, его завозили из-за границы. Первый йодный завод был построен именно в 1915 году в Екатеринославе (сейчас Днепропетровск). Получали йод из черноморской водоросли филлофоры. За годы Первой мировой войны на этом заводе быль добыто около 200 кг йода.

2. Получение йода из отходов селитряного производства - маточных растворов чилийской (натриевой) селитры, содержащей до 0,4 % йода в виде йодата и йодида натрия.

Этот способ начал применяться с 1868 года и в силу дешевизны сырья и простоты получения микроэлемента получил широкое распространение в мире.

3. Получение йода из природных йодсодержащих растворов, например воды некоторых соленых озер или попутных (буровых) нефтяных вод, содержащих обычно 20-40 мг/л йода в виде йодидов (местами 1 литр этих вод содержит свыше 100 мг йода).

В нашей стране уже в годы советской власти йод стали получать из подземных и нефтяных вод Кубани, где он был обнаружен русским химиком А. Л. Потылицыным еще в 1882 году. Позже подобные воды были открыты в Туркмении и Азербайджане. В настоящее время нефтяные буровые воды служат основным сырьем для промышленного получения йода в России.

Но йода в подземных водах и попутных водах нефтедобычи очень мало. В этом и заключалась основная трудность при создании экономически оправданных промышленных способов его получения. Нужно было найти "химическую приманку", которая бы образовывала с йодом довольно прочное соединение и накапливала его. Первоначально такой "приманкой" оказался крахмал, потом соли меди и серебра, которые связывали йод в нерастворимые соединения. Затем использовали керосин - йод хорошо растворяется в нем. Но все эти способы оказались дорогостоящими, а порой и огнеопасными.

В 1930 году советский инженер В. П. Денисович разработал угольный метод извлечения йода из нефтяных вод, и этот метод довольно долго был основой советского йодного производства. В 1 кг угля за месяц накапливалось до 40 г йода.

4. Ионитный способ, основанный на избирательном поглощении йода особыми химическими соединениями - высокомолекулярными ионообменными смолами.

Все расширяющееся применение брома и его органических и неорганических соединений способствовало бурному развитию производства этого элемента.

Бром стали получать из природных солей, содержащихся в водах нефтяных месторождений, в озерной рапе, морской и океанской воде, из маточных растворов, остающихся после извлечения хлористого калия из сильвинита и карналлита. Самым распространенным методом получения брома стало выдувание его воздухом. Этим методом бром можно извлекать непосредственно из морской воды, хотя в ней содержание элемента в десятки раз меньше, чем в рапе соляных озер.

На бромном заводе морскую воду или озерную рапу концентрируют, подкисляют серной кислотой и хлорируют. Хлор, вытесняя бром из солей, переводит его в свободное состояние. Обработанный таким образом раствор поступает в высокую кирпичную или деревянную башню, выложенную изнутри кислотоупорными плитками. Башня заполнена насадкой - небольшими керамиковыми кольцами. Раствор стекает по насадке, а навстречу ему идет Мощный поток воздуха, который извлекает бром из жидкости. Одновременно увлекается небольшое количество хлора (около 5%), в связи с чем бромвоздушную смесь пропускают еще через одну башню с насадкой, орошаемой тем же хлорированным раствором.

Очищенная от хлора смесь воздуха и брома поступает в поглотительную башню, где элементарный бром взаимодействует с железной стружкой и превращается в бромистое железо. Раствор бромистого железа слегка упаривают в чугунных котлах и разливают в железные барабаны; в них он застывает в темно-бурую кристаллическую массу. Из бромистого железа получают в промышленности чистый бром и различные бромистые соли.

На некоторых бромных заводах бром из предварительно хлорированной рапы отгоняется паром в специальных колоннах. Рапа поступает в колонну сверху, предварительно пройдя трубчатый теплообменник, где нагревается до 70-75° С. Водяной пар и хлор поступают в нижнюю часть колонны навстречу рапе, стекающей вниз по насадкам башни.

Можно извлекать бром из рапы с помощью электрического тока. Чаще всего электролизу подвергают бромистый магний. Электролиз производится в керамиковой ванне с угольными электродами. Однако этот способ пока не нашел широкого применения.

Во многих морях на тысячи километров простираются заросли водорослей. На Дальнем Востоке они тянутся сплошной полосой вдоль берегов Тихого океана - от Кореи до Северного моря. Значительные площади, занятые водорослями, имеются в Черном и Белом морях.

Японцы и китайцы с давних пор употребляли морскую капусту в пищу. В Европе уже в XVIII в. водорослям нашли промышленное применение: из их золы стали добывать поташ. Позднее из золы водорослей стали извлекать йод. В 30-х годах прошлого века йодные заводы работали во Франции, Шотландии и Испании.

Водоросли сушат и пережигают на золу. Сначала для сжигания водорослей пользовались ямами, вырытыми в песке и обмазанными глиной, затем создали специальные печи, в которых водоросли сжигаются при ограниченном доступе воздуха.

Полученную золу обрабатывают водой в аппаратах, представляющих собой несколько небольших железных или деревянных ящиков, соединенных трубами. В ящиках на некотором расстоянии от дна имеются решетки, на которые накладывают фильтровальную ткань. На ткань насыпают золу и пропускают через нее воду. Вода, перетекая из чана в чан, насыщается солями, вымываемыми

ив золы. Чем медленнее перетекает вода, тем концентрированнее становится раствор, в котором кроме йодистых солей содержатся и другие ценные вещества: хлористый калий, хлористый натрий и др. В связи с этим раствор предварительно выпаривают и выделяют соли кристаллизацией. Свободный йод извлекают из раствора с помощью двуокиси марганца, хлора, бертолетовой соли. В результате реакции между этими веществами и йодистыми солями на дно чана выпадают в осадок мелкие кристаллики чистого йода. Вместе с маточным раствором их выливают из чана на фильтр, промывают водой для удаления остатков солей и прессуют. Готовый йод упаковывают в деревянные бочки.

До 70-х годов прошлого столетия водоросли были единственным источником промышленного получения йода. В 1868 г. в Чили йод стали извлекать из отходов селитряного производства. Бесплатное сырье и простой способ извлечения йода обеспечили чилийскому йоду широкое распространение во всем мире. Производство йода из водорослей прекратилось, так как оно не могло конкурировать с производством дешевого чилийского йода.

Однако во время первой мировой войны, когда германские подводные лодки блокировали международные морские пути, поступление чилийского йода в Европу прекратилось, и промышленники были вынуждены вспомнить о водорослях. Во Франции, Англии, Испании возобновилась добыча йода из водорослей, было организовано йодное производство в Японии и России.

В 1915 г. в Екатеринославе (ныне Днепропетровске) появился небольшой йодный завод, перерабатывавший черноморские водоросли - филофору. За все годы первой мировой войны на заводе было добыто всего 200 кг йода. Во время гражданской войны завод был разрушен.

Почти одновременно с началом использования черноморских водорослей ученые занялись исследованием водорослей Белого моря и Тихого океана. По предложению В. Е. Тищенко в Архангельске был построен йодный завод с проектной мощностью до 6 тыс. кг/год йода. Однако из-за плохо организованного сбора водорослей завод не выпускал более нескольких десятков килограммов йода в год. Не лучше обстояло дело и на Дальнем Востоке. Продукция йодного завода во Владивостоке исчислялась лишь десятками килограммов.

Только после Великой Октябрьской социалистической революции добыча йода из беломорских и дальневосточных водорослей резко возросла. Йод стали получать не килограммами, а десятками тонн.

Однако прошло немного лет, и у водорослей появился опасный соперник. При добыче нефти из скважин выливается большое количество соленых вод, сопутствующих нефти. Эти воды, представляющие собой бесплатное бросовое сырье, стали в руках химиков ценным промышленным источником получения йода.

Основная трудность создания выгодного промышленного способа извлечения йода из соленых вод заключалась в его низком содержании - в сто раз меньшем, чем в маточных растворах селитряной земли и в щелоках, получаемых из золы водорослей.

Надо было устраивать большие бассейны и испарять в них летом нефтяные воды для получения более концентрированных растворов йодистых солей. Но это требовало огромных площадей, больших затрат на сооружение водохранилищ. Кроме того, под действием кислорода воздуха йодистые соли разлагаются, и йод улетучивается в атмосферу. Требовалось искать другие пути.

В конце XVIII в. русский академик Т. Е. Ловиц впервые в мире обратил внимание на способность древесного угля поглощать растворенные вещества. Он с успехом применил уголь для очистки гнилой воды, водки и обесцвечивания некоторых растворов. Открытие Ловица еще при жизни ученого получило широкое распространение во всем мире. В нашем веке по инициативе другого русского академика - Н. Д. Зелинского - древесным углем стали поглощать ядовитые газы, пары летучих жидкостей. В мельчайших порах угля, как крупинки меда в сотах, накапливаются молекулы поглощаемых веществ. Поглотительная способность угля тем выше, чем больше пор на его поверхности. Чтобы увеличить пористость угля, его стали прокаливать в специальных печах при 700-1000° С или пропускать через него струю водяного пара; такой уголь называется активированным. Общая поверхность пор в 1 а такого угля доходит до 1000 м 2 .

Разработанный инженером Б. П. Денисовичем в 1930 г. угольный метод извлечения йода из нефтяных вод стал вскоре основой советского йодного производства. Метод дал возможность получать дешевый йод из отбросов, полностью освободил промышленность от импорта йода. Сейчас по этому методу работают все советские йодные заводы.

Нефтяная вода, поступающая на йодный завод, сперва отстаивается в специальных бассейнах от механических примесей, а затем подается насосом в деревянные напорные баки, установленные на высокой эстакаде. Отсюда вода самотеком поступает в небольшой деревянный чан-смеситель, где к ней прибавляют немного серной кислоты и азотистокислого натрия или пропускают через ноток воды струю хлора. Эти окислители реагируют с йодистыми солями, находящимися в нефтяной воде, и окисляют ионы йода в свободный йод.

Из смесителя вода, содержащая свободный йод, по деревянным желобам перетекает в высокие цилиндрические резервуары, на 75-80% объема заполненные активированным углем. Уголь по мере протекания через него воды постепенно насыщается йодом, который затем отмывают от угля в железных резервуарах с помощью раствора щелочи. Атомы йода претерпевают новую метаморфозу, из них образуются йодистые соли. Раствору йодистых солей дают некоторое время отстояться в небольших резервуарах-отстойниках для очистки от примесей (частицы угля, гипса и г. п.). Затем его пропускают через фильтр в чаны-кристаллизаторы, где происходит окончательное выделение свободного йода. Снова ион йода - уже в последний раз - превращается в молекулярный йод. Эта метаморфоза осуществляется путем добавки к раствору какого-нибудь окислителя - бертолетовой соли, хромпика и др.

На дно чана выпадают кристаллы йода, которые вместе с маточным раствором поступают на фильтр, промываются водой и прессуются в бумажных или суконных салфетках на прессах. Отпрессованный йод упаковывают в деревянные бочки.

Йод может быть извлечен из йодистых солей, содержащихся в водах нефтяных месторождений, электролизом с применением медного или угольного катода, выдуванием воздуха (подобно брому), осаждением в виде солей меди и серебра. Однако эти методы пока не нашли промышленного применения.

Йод был открыт в 1811 г. парижским фабрикантом селитры, по имени Куртуа в соде, приготовленной из золы прибрежных растений. В 1813 г. Гей-Люссак исследовал новое вещество и дал ему название по фиолетовой окраске паров - иод. Оно произведено от греческого слова - темно-синий, фиалковый. Затем, когда было установлено его сходство с хлором, Дэви предложил именовать элемент иодином (аналогичное хлорином); это название принято в Англии и США до сих пор.

Получение:

Главным источником получения иода в СССР служат подземные буровые воды, которые содержат до 10 - 50 мг/л иода. Соединения иода также имеются в морской воде, но в столь малых количествах, что непосредственное выделение их из воды очень затруднительно. Однако существуют некоторые водоросли, которые накапливают иод в своих тканях. Зола этих водорослей служит сырьем для получения иода. Иод встречается также в виде солей калия - иодата КIO 3 и периодата КIO 4 , сопутствующих залежам нитрата натрия (селитры) в Чили и Боливии.
Йод может быть получен аналогично хлору окислением HI различными окислителями. В промышленности его обычно получают из иодидов, действуя на их растворы хлором. Таким образом, получение иода основано на окислении его ионов, причем в качестве окислителя применяется хлор.

Физические свойства:

Иод при комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым блеском. При нагревании под атмосферным давлением он сублимируется (возгоняется), превращаясь в пар фиолетового цвета; при охлаждении пары иода кристаллизуются, минуя жидкое состояние. Этим пользуются на практике для очистки иода от нелетучих примесей. Мало растворим в воде, хорошо во многих органических растворителях.

Химические свойства:

Свободный йод проявляет чрезвычайно высокую химическую активность. Он вступает во взаимодействие почти со всеми простыми веществами. Особенно быстро и с выделением большого количества теплоты протекают реакции соединения йода с металлами.
С водородом реагирует только при достаточно сильном нагревании и не полностью, так как начинает идти обратная реакция - разложение иодоводорода:
H 2 + I 2 = 2HI - 53,1 кДж
Растворяется в растворах иодидов, образуя неустойчивые комплексы. Со щелочами диспропорционирует, образуя иодиды и гипоиодиты. Азотной кислотой окисляется до иодной кислоты.
Если к желтоватому водному раствора йода добавить сероводородной воды (водный раствор H 2 S), то жидкость обесцвечивается и становится мутной от выделившейся серы:
H 2 S + I 2 = S + 2HI

В соединениях проявляет степени окисления -1, +1, +3, +5, +7.

Важнейшие соединения:

Йодоводород, газ, очень похож по своим свойствам на хлороводород, но отличается более выраженными восстановительными свойствами. Очень хорошо растворим в воде (425:1), концентрированный раствор йодоводорода дымит вследствие выделения HI, образующего с водяными парами туман.
В водном растворе принадлежит к числу наиболее сильных кислот.
Иодоводород уже при комнатной температуре постепенно окисляется кислородом воздуха, причем под действием света реакция сильно ускоряется:
4HI + O 2 = 2I 2 + 2H 2 O
Восстановительные свойства иодоводорода заметно проявляются при взаимодействии с концентрированной серной кислотой, которая при этом восстанавливается до свободной серы или даже до H 2 S. Поэтому HI невозможно получить действием серной кислоты на иодиды. Обычно иодоводород получают действием воды на соединения иода с фосфором - РI 3 . Последний подвергается при этом полному гидролизу, образуя фосфористую кислоту и йодоводород:
РI 3 + ЗН 2 О = Н 3 РО 3 + 3HI
Раствор иодоводорода (вплоть до 50%-ной концентрации) можно также получить, пропуская H 2 S в водную суспензию иода.
Иодиды , соли иодоводородной кислоты. Иодид калия применяют в медицине - в частности, при заболеваниях эндокринной системы, фотореактивы.
Иодноватистая кислота - HOI является амфотерным соединением, у которого основные свойства несколько преобладают над кислотными. Может быть получена в растворе взаимодействием йода с водой
I 2 + Н 2 О = НI + НОI
Иодноватая кислота - НIO 3 может быть получена окислением йодной воды хлором:
I 2 + 5Cl 2 + 6H 2 O = 2HIO 3 + 10HCl
Бесцветные кристаллы, вполне устойчивые при комнатной температуре. Сильная кислота, энергичный окислитель. Соли - иодаты, сильные окислители в кислой среде.
Оксид йода(V) , иодноватый ангидрид, может быть получен при осторожном нагревании НIO 3 до 200°С, порошок. При нагревании выше 300°С распадается на иод и кислород, проявляет окислительные свойства, в частности используется для поглощения CO в анализе:
5СО + I 2 O 5 = I 2 + 5CO 2
Иодная кислота - HIO 4 и ее соли (периодаты) хорошо изучены. Сама кислота может быть получена действием НСlO 4 на иод: 2НСIО 4 + I 2 =2НIO 4 + Сl 2
или электролизом раствора НIO 3: НIO 3 +Н 2 О = Н 2 (катод) + НIO 4 (анод)
Из раствора иодная кислота выделяется в виде бесцветных кристаллов, имеющих состав НIO 4 ·2Н 2 О. Этот гидрат следует рассматривать как пятиосновную кислоту H 5 IO 6 (ортоиодную), так как в нем все пять атомов водорода могут замещаться металлами с образованием солей (например, Ag 5 IO 6). Иодная кислота - слабая, но более сильный окислитель, чем НСlO 4 .
Оксид иода (VII) I 2 О 7 не получен.
Фториды йода, IF 5 , IF 7 - жидкости, гидролизуются водой, фторирующие агенты.
Хлориды йода, ICl, ICl 3 - крист. вещества, в растворах хлоридов растворяются с образованием комплексов - и - , иодирующие агенты.

Применение:

Иод широко применяются в химической промышленности (иодидное рафинирование Zr и Ti), для синтеза полуповодниковых материалов.
Иод и его соединения используются в аналитической химии (иодометрия) В медицине в виде так называемой йодной тинктуры (10% раствор иода в этиловом спирте), антисептического и кровоостанавливающего средства. Соединения иода для профилактики (иодирование продуктов) и лечения заболеваний щитовидной железы, там же используются радиоактивные изотопы 125 I, 131 I, 132 I .
Мировое производство (без СССР) - около 10 тыс. т/год (1976).
ПДК около 1 мг/м 3 .

См. также:
П.А. Кошель. Вездесущий йод. "Химия" (прил. к газ. "1-е Сентября"), №20, 2005 г.

Способы производства йода

Преимущества предлагаемых способов

Йод в мировой практике извлекают из солевых растворов (природные воды и попутные воды нефтяных и газовых сесторождений), массовая концентрация йода в которых составляет 9-300г\м. куб.

Все способы извлечения йода можно разделить на две группы в зависимости от того, в каком виде йод извлекают из воды: в виде йодида или в виде элементарного йода. Йод из промышленных вод можно выделить в виде осадков йодидов различных металлов. Известны также способы выделения йодида из маломинерализованнных вод с помощью анионообменных смол. Ни один из этих способов широкого применения не имеет из-за сложностей технологии и аппаратуры, высокой стоимости, низкого выхода продукта.

Все наиболее распространенные способы извлечения йода из промышленных вод, применяемые в мировой практике, включают предварительное окисление йодида до элементарного йода. Из множества известных способов извлечения элементарного йода из промышленных вод наиболее широко применяются способы воздушной десорбции, а также адсорбции активированным углем и ионообменными смолами. Выбор способа извлечения йода определяется, главным образом, массовой концентрацией йода в промышленной воде и её температурой.

На выбор конкретной аппаратурно-технологической схемы процесса извлечения в рамках выбранного способа влияют химический состав промышленной воды (щелочность, галогенопоглощаемость, общая минерализация, содержание щелочноземельных элементов, сульфатов, железа и др.), содержание механических примесей и нефти, условия сброса отработанной воды, конкретные техникоэкономические и географические особенности района строительства производства.

Воздушно-десорбционный способ извлечения йода из промышленных вод

Способ основан на достаточно высокой упругости паров йода над промышленной водой, содержащей элементарный йод, что позволяет осуществить процесс десорбции йода из воды потоком воздуха.

Технологическая схема производства включает следующие стадии:

  • подкисление промышленной воды минеральной кислотой (соляной, серной) для подавления гидролиза;
  • окисление йодида до элементарного йода (хлором, гипохлоритом, нитритом);
  • десорбция йода из воды воздухом;
  • абсорбция йода из воздуха абсорбентом, содержащим химически активный компонент (диоксид серы, сульфит натрия, щелочь);
  • кристаллизация йода из абсорбента (хлором, бихроматом, бертолетовой солью, кислотой, перекисью водорода);
  • обезвоживание и очистка йода.

Основу промышленных установок составляют насадочные башни десорбции и абсорбции йода, через которые вентилятором продувают поток воздуха. Конструкция башен, массообменных насадок, оросителей и брызгоотбойников в этих башнях весьма разнообразны.

Воздушно-десорбционный способ по сравнению с другими прост и менее трудоемок, позволяет легко автоматизировать технологический процесс, обеспечивает самое высокое качество продукции, аппаратура высокопроизводительна и компактна. Отечественный и зарубежный опыт эксплуатации йодных производств показал, что при концентрации йода в воде 20-60г/м куб. воздушно-десорбционный способ экономичнее других при переработке промышленных вод с температурой выше 30-35 град. по Цельсию, т.к. при повышении температурыувеличивается упругость йода над водой, сокращается требуемый расход воздуха и, соответственно, электроэнергии на процесс извлечения йода. Для вод с более высокой концентрацией йода воздушно-десорбционный способ экономически оправдан и при более низкой температуре воды.

Воздушно-десорбционный способ производства йода наиболее широко применяется в мировой практике. Таким способом получают весь йод в США, большую часть йода Японии и в странах СНГ. В последнии годы на этот способ переходит и Чили - крупнейший поставщик йода на мировой рынок.

Угольно-адсорбционный способ извлечения йода из промышленной воды

Основан на способности активированных углей адсорбировать элементарный йод из водных растворов.

Принципиальная технологическая схема производства также включает стадии подкисления воды, окисления йодида, кристаллизации, обезвоживания и очистки йода. В отличии от схемы производства воздушно-десорбционным способом вместостадии воздушной десорбции и абсорбции йода здесь имеются стадии адсорбции йода активированным углем и десорбции йода с углей расвором щелочи при нагреваниии.

Основу промышленных установок составляют адсорберы йода, в которых осуществляется бенапорная фильтрация промышленной воды с йодом через слой зернистого угля.

Угольно-адсорбционный способ характеризуется низкой производительностью и, соответственно, большим объемом аппаратуры, сложностью автоматизации процесса, высокой трудоёмкостью, низким качеством продукции. В настоящее время этот способ используется на некоторых заводах России, Туркмении и Азербайджана, но постепенно заменяется на более прогрессивные воздушно-десорбционный и ионообменный способы.

Ионообменный способ извлечения йода из промышленных вод

Основан на высокой адсорбционной емкости отдельных ионообменных смол по йоду (до 350-400кг/м куб.). Принципиальная схема производства не отличается от схемы производства угольно-адсорбционным способом. В разных странах в промышленности используются различные ионообменные смолы, в странах СНГ обычно применяются АМП и АВ-17-8.

Основные аппараты - адсорберы - значительно более производительные, чем при угольно-адсорбционном способе, за счет использования напорной фильтрации через стационарный слой ионита или техники взвешенного слоя, поэтому количество адсорберов и производственные площади резко сокращаются.

Ионообменный способ обеспечивает хорошее качество готового продукта, возможность автоматизации процесса, а также возможность проведения процесса извлечения йода при пониженной кислотности промышленной воды, а в некоторых случаях и при щелочной воде.

Экономически ионообменный способ производства оправдан при низкой температуре промышленной воды, при повышенных температурах процесс протекает хуже, возрастают потери йода.

В промышленном маштабе ионообменный способ производства йода применяют в Болгарии, на некоторых заводах Японии, на Ново-Нефтечалинском йодобромном заводе в Азербайджане.

Источником сырья для производства йода в Туркменистане являются подземные буровые пластовые воды, содержащие 27,5 - 33,5г/м куб. йодида, с исходной щелочностью 1,0 - 1,4 г-экв/м куб., с достаточно высокой температурой на устье скважин 50 - 90 град. по Цельсию и содержанием взвешенных частиц 100 - 230 г/м куб.

Исходя из особенностей существующих методов производства аппаратное оформление технологических большинсво процессов включает в себя: десорбер, абсорбер, систему воздуховодов, систему дроссельных клапанов, вентилятор, а так же насосное и емкостное оборудование. Узел переработки состоит из кристаллизатора, нутч-фильтра, плавителя, конденсатора, десублиматора и аппарата чешуирования. Стоит отметить, что всё оборудование выполняется из титанового сплава марки ВТ 1-0.

Лучшие производства по достигаемым технологическим показателям перечисленных методов являются:

Производство йода методом воздушной десорбции на совместном российско-американском заводе Краснодарском крае (СП), Россия;

Действующее производство йода методом воздушной десорбции на Троицком заводе (ТИЗ), Россия;

Производство йода методом воздушной десорбции на фирме "Ise Chemical Industri Co", Япония.

Горизонт улучшается. В воздухе соль и йод .

Откуда взяться в воздухе йоду?

Йод – элемент довольно редкий: в земной коре его очень мало – всего 0,00005%, это вчетверо меньше, чем мышьяка , в пять раз меньше, чем брома . Йод относится к галогенам (по-гречески hals – соль, genos – происхождение). Действительно, в природе все галогены встречаются исключительно в виде солей. Но если минералы фтора и хлора весьма распространены, то собственные минералы иода (лаутарит Ca(IO 3) 2 , иодаргирит AgI) – чрезвычайная редкость. Обычно йод встречается среди других солей в виде примеси. Примером может служить природный нитрат натрия – чилийская селитра, в которой есть примесь иодата натрия NaIO 3 . Залежи чилийской селитры начали разрабатывать еще в начале 19 века. После растворения породы в горячей воде раствор фильтровали и охлаждали. При этом в осадок выпадал чистый нитрат натрия, который шел на продажу в виде удобрения. Из оставшегося после кристаллизации раствора добывали йод. В 19 веке Чили стало главным поставщиком этого редкого элемента.

Иодат натрия неплохо растворим в воде: 9,5 г на 100 г воды при 25 о С. Значительно лучше растворяется иодид натрия NaI: 184 г на 100 г воды! Йод в породах находится чаще всего именно в виде легкорастворимых неорганических солей и потому может выщелачиваться из них подземными водами. И далее попадает в реки, моря и океаны, где накапливается некоторыми организмами, в том числе водорослями. Например, в 1 кг высушенной морской капусты (ламинарии) содержится 5 г йода, тогда как в 1 кг морской воды – всего лишь 0,025 мг, то есть в 200 тысяч раз меньше! Недаром в некоторых странах из ламинарии до сих пор добывают йод, а у морского воздуха (его-то и имел в виду Бродский) – особый запах; в морской соли тоже всегда есть немного йода. Ветры, переносящие воздушные массы с океана на материк, переносят и йод. В приморских областях количество йода в 1 куб. м воздуха может достигать 50 мкг, тогда как в континентальных и горных – всего 1 или даже 0,2 мкг.

Сейчас йод добывают в основном из вод нефтяных и газовых месторождений, и потребность в нем довольно велика. Во всем мире ежегодно добывают более 15 000 тонн йода.

Открытие и свойства йода.

Впервые йод получил из золы морских водорослей французский химик Бернар Куртуа в 1811. Вот как он описал свойства открытого им элемента: «Новое вещество осаждается в виде черного порошка, превращающегося при нагревании в пары великолепного фиолетового цвета. Эти пары конденсируются в форме блестящих кристаллических пластинок, имеющих блеск... Удивительная окраска паров нового вещества позволяет отличить его от всех доныне известных веществ...». По окраске паров йод и получил свое название: по-гречески «иодес» – фиолетовый.

Куртуа наблюдал еще одно необычное явление: твердый йод при нагревании не плавился, а сразу превращался в пар; такой процесс называется возгонкой. Д.И.Менделеев в своем учебнике химии так описывает этот процесс: «Чтобы очистить йод, его возгоняют... йод прямо из паров переходит в кристаллическое состояние и садится в охлаждаемых частях аппарата в виде пластинчатых кристаллов, имеющих черновато-серый цвет и металлический блеск». Но если кристаллы йода нагревать в пробирке быстро (или не давать парам йода выходить наружу), то при температуре 113 о С йод расплавится, превратившись в черно-фиолетовая жидкость. Объясняется это тем, что при температуре плавления давление паров йода высоко – около 100 мм ртутного столба (1,3Ч 10 4 Па). И если над нагретым твердым йодом не будет достаточно его паров, то он испарится быстрее, чем расплавится.

В чистом виде йод – черно-серые тяжелые (плотность 4,94 г/см 3) кристаллы с фиолетовым металлическим блеском. Почему же йодная настойка не фиолетовая? Оказывается, в разных растворителях йод имеет разный цвет: в воде он желтый, в бензине, тетрахлориде углерода CCl 4 , многих других так называемых «инертных» растворителях имеет фиолетовый цвет – точно такой же, как у паров йода. Раствор йода в бензоле, спирте и ряде других растворителей имеет буро-коричневый цвет (как у иодной настойки); в водном растворе поливинилового спирта (–СН 2 –СН(ОН)–) n йод имеет ярко-синий цвет (это раствор применяется в медицине в качестве дезинфицирующего средства под названием «иодинол», им полощут горло, промывают раны). И вот что любопытно: реакционная способность йода в «разноцветных» раствора неодинакова! Так, в коричневых растворах йод намного активнее, чем в фиолетовых. Если порошок меди или листочек тонкой медной фольги внести в 1%-ный коричневый раствор, он обесцветится за 1–2 минуты в результате реакции 2Cu + I 2 ® 2CuI. Фиолетовый раствор останется в этих условиях без изменений в течение нескольких десятков минут. Каломель (Hg 2 Cl 2) обесцвечивает коричневый раствор за несколько секунд, а фиолетовый – только за две минуты. Эти опыты объясняются тем, что молекулы йода могут взаимодействовать с молекулами растворителя, образуя комплексы, в которых йод более активен.

Синяя окраска появляется и при взаимодействии йода с крахмалом. В этом можно убедиться, капнув иодной настойкой на ломтик картофеля или на кусочек белого хлеба. Реакция эта настолько чувствительна, что с помощью йода легко обнаружить крахмал на свежем срезе картофелины или в муке. Еще в 19 в. эту реакцию использовали, чтобы уличить недобросовестных торговцев, добавляющих в сметану «для густоты» пшеничной муки. Если на образец такой сметаны капнуть иодной настойкой, синее окрашивание сразу выявит обман.

Чтобы вывести пятно от иодной настойки, надо использовать раствор тиосульфата натрия, который применяется в фотографии и продается в магазинах фототоваров (его называют также «фиксажем» и «гипосульфитом»). Тиосульфат мгновенно реагирует с йодом, полностью его обесцвечивая: I 2 + 2Na 2 S 2 O 3 ® 2NaI + Na 2 S 4 O 6 . Достаточно протереть запачканную йодом кожу или ткань водным раствором тиосульфата, как желто-коричневое пятно тут же исчезнет.

Йод в аптечке.

В сознании обычного человека (не химика) слово «йод» ассоциируется с пузырьком, который стоит в аптечке. На самом деле в пузырьке находится не йод, а иодная настойка – 5%-ный раствор йода в смеси спирта и воды (в настойку добавляют также иодид калия; он нужен для того, чтобы йод лучше растворялся). Раньше в медицине широко применялся также иодоформ (трииодметан CHI 3) – дезинфицирующее средство с неприятным запахом. Препараты, содержащие йод, обладают антибактериальными и противогрибковыми свойствами, они оказывают также противовоспалительное действие; их применяют наружно для обеззараживания ран, при подготовке операций.

Иод ядовит. Даже такая привычная иодная настойка при вдыхании ее паров поражает верхние дыхательные пути, а при попадании внутрь вызывает тяжелые ожоги пищеварительного тракта. Длительное введение йода в организм, а также повышенная чувствительность к нему может вызвать насморк, крапивницу, слюно- и слезотечение, угревидную сыпь.

Йод в организме.

Вот строки другого поэта – Беллы Ахмадулиной:

...То ль сильный дух велел искать исхода,

То ль слабость щитовидной железы

выпрашивала горьких лакомств иода?

Зачем же нужно щитовидной железе это «лакомство»?

Как правило, в биохимических процессах участвуют только «легкие» элементы, находящиеся в первой трети периодической таблице. Чуть ли не единственным исключением из этого правила является йод. В человеке содержится около от 20 до 50 мг йода, значительная часть которого сконцентрирована в щитовидной железе (остальной йод находится в плазме крови и мышцах).

Щитовидная железа была уже известна врачам глубокой древности, которые заслуженно приписывали ей важную роль в организме. По форме она похожа на галстук-бабочку, т.е. состоит из двух долей, соединенных перешейком. Щитовидная железа выделяет в кровь гормоны, оказывающие очень разностороннее влияние на организм. Два из них содержат йод – это тироксин (Т4) и трииодтиронин (Т3). Щитовидная железа регулирует развитие и рост как отдельных органов, так и всего организма в целом, настраивает скорости обменных процессов.

В пищевых продуктах и в питьевой воде йод содержится в виде солей иодоводородной кислоты – иодидов, из которых он легко всасывается в передних отделах тонкого кишечника. Из кишечника йод переходит в плазму крови, откуда жадно поглощается щитовидной железой. Там он и превращается в ней в важнейшие для организма тиреоидные гормоны (от греческого thyreoeides – щитовидный). Процесс этот сложный. Сначала ионы I – ферментативно окисляются до I + . Эти катионы реагируют с белком тиреоглобулином, в котором много остатков аминокислоты тирозина. Под действием фермента иодиназы происходит иодирование бензольных колец тирозина с последующим образованием тиреоидных гормонов. В настоящее время их получают синтетически, причем по строению и действию они ничем не отличаются от природного.

Если синтез тиреоидных гормонов замедляется, человек заболевает зобом . Болезнь вызывается недостатком йода в почве, воде и, следовательно, в растениях, животных и производимых в этой местности пищевых продуктах. Такой зоб называется эндемическим, т.е. свойственным данной местности (от греч. endemos – местный). Районы с недостатком йода встречаются довольно часто. Как правило, это местности, удаленные от океана или отгороженные от морских ветров горами. Таким образом, значительная часть почвы земного шара бедна йодом, соответственно, бедны йодом пищевые продукты. В России дефицит йода встречается в горных районах; крайне выраженная иодная недостаточность выявлена в Республике Тува, а также в Забайкалье. Мало его на Урале, Верхней Волге, Дальнем Востоке, Марийской и Чувашской республиках. Не все благополучно в йодом в ряде центральных районов – Тульской, Брянской, Калужской, Орловской, других областях. В питьевой воде, растениях и животных в этих районах содержание йода понижено. Щитовидная железа, как бы компенсируя недостаточное поступление йода, разрастается – иногда до таких размеров, что деформируется шея, сдавливаются кровеносные сосуды, нервы и даже бронхи и пищевод. Эндемический зоб легко предотвратить, если восполнять дефицит йода в организме.

При нехватке йода во время беременности у матери, а также в первый период жизни ребенка у него замедляется рост, снижается умственная деятельность, могут развиться кретинизм, глухонемота и другие тяжелейшие отклонения в развитии. Своевременная диагностика помогает избежать этих несчастий путем простого введения тироксина.

Нехватка йода у взрослых приводит к снижению частоты сердечных сокращений и температуры тела – больные зябнут даже в жаркую погоду. У них снижается иммунитет , выпадают волосы, замедляются движение и даже речь, отекают лицо и конечности, отмечается слабость, быстрая утомляемость, сонливость, ухудшение памяти, безучастность к окружающему миру. Заболевание также лечат препаратами Т3 и Т4. При этом все перечисленные симптомы исчезают.

Где взять йод.

Для профилактики эндемического зоба йод вводится в продукты питания. Самый распространенный метод – иодирование поваренной соли. Обычно в нее вводят иодид калия – примерно 25 мг на 1 кг. Однако KI во влажном теплом воздухе легко окисляется до иода, который улетучивается. Именно этим объясняется малый срок хранения такой соли – всего 6 месяцев. Поэтому в последнее время иодид калия заменяют иодатом KIO 3 . Помимо поваренной соли, йод добавляют в ряд витаминных смесей.

Иодированные продукты не нужны тем, кто потребляет достаточно иода с пищей и водой. Потребность в йоде для взрослого человека мало зависит от пола и возраста и составляет примерно 150 мкг в сутки (однако она возрастает при беременности, усиленном росте, охлаждении). В большинстве пищевых продуктах йода очень мало. Например, в хлебе и макаронных изделиях его обычно меньше 5 мкг; в овощах и фруктах – от 1–2 мкг в яблоках, грушах и черной смородине до 5 мкг в картофеле и до 7–8 мкг в редисе и винограде; в курах и говядине – до 7 мкг. И это в расчете на 100 г сухого продукта, т.е. золы! Причем при длительном хранении или тепловой обработке теряется от 20 до 60% йода. А вот рыба, особенно морская, богата йодом: в сельди и горбуше его 40–50 мкг, в треске, минтае и хеке – до 140–160 (также в расчете на 100 г сухого продукта). Намного больше йода в печени трески – до 800 мкг, но особенно много его в бурых морских водорослях – «морской капусте» (она же ламинария) – в ней может быть до 500 000 мкг йода! В нашей стране ламинария растет в Белом, Баренцевом, Японском и Охотском морях.

Еще в Древнем Китае морскими водорослями успешно лечили заболевания щитовидной железы. В прибрежных районах Китая существовала традиция – после родов женщинам давали морскую капусту. При этом материнское молоко было полноценным, а ребенок рос здоровым. В 13 в. там даже был издан указ, обязывающий всех граждан есть морские водоросли для укрепления здоровья. Восточные врачеватели утверждают, что после 40 лет продукты из морской капусты обязательно должны присутствовать в рационе даже здоровых людей. Употреблением в пищу ламинарии некоторые объясняют долголетие японцев, а также тот факт, что после ядерных бомбардировок Хиросимы и Нагасаки количество погибших в результате загрязнения окружающей среды радиоактивными веществами было сравнительно небольшим.

Йод и радиация.

В природе йод представлен единственным стабильным изотопом 127 I.

Искусственные радиоактивные изотопы йода – 125 I, 131 I, 132 I и другие широко используются в биологии и, особенно, в медицине для определения функционального состояния щитовидной железы и лечения ряда её заболеваний. Применение радиоактивного йода в диагностике связано со способностью йода избирательно накапливаться в щитовидной железе; использование в лечебных целях основано на способности излучения радиоизотопов йода разрушать больные клетки железы.

При загрязнении окружающей среды продуктами ядерного деления радиоактивные изотопы йода быстро включаются в биологический круговорот, попадая, в конечном счете, в молоко и, следовательно, в организм человека. Так, многие жители районов, подвергнутых влиянию ядерного взрыва в Чернобыле, получили изрядную дозу радиоактивного йода-131 (период полураспада 8 суток) и повредили щитовидную железу. Больше всего больных было в областях, где естественного йода мало и жители не были защищены «обычным йодом». Особенно опасен «радиоиод» для детей, щитовидная железа которых в 10 раз меньше, чем у взрослых и обладает большей радиочувствительностью, что может привести к раку щитовидной железы.

Для защиты щитовидной железы от радиоактивного йода рекомендуется применять препараты обычного йода (по 100–200 мг на прием), который «блокирует» щитовидную железу от попадания в нее радиоиода. Не поглощенный щитовидной железой радиоактивный йод почти полностью и сравнительно быстро выделяется с мочой. К счастью, радиоактивный йод живет недолго, и через 2–3 месяца практически полностью распадается.

Йод в технике.

Значительные количества добываемого йода используются для получения металлов высокой степени чистоты. Этот метод очистки основан на так называемом галогенном цикле, открытом в 1915 американским физикохимиком Ирвингом Ленгмюром (1881–1957). Сущность галогенного цикла можно пояснить на примере современного способа получения металлического титана высокой чистоты. При нагревании порошка титана в вакууме в присутствии йода до температуры выше 400 о C образуется газообразный иодид титана (IV). Его пропускают над титановой проволокой, нагреваемой током до 1100–1400 о C. При такой высокой температуре TiI 4 существовать не может и распадается на металлический титан и йод; чистый титан конденсируется на проволоке в виде красивых кристаллов, а выделившийся йод снова может реагировать с титановым порошком, превращая его в летучий иодид. Иодидный метод можно использовать для очистки различных металлов – меди, никеля, железа, хрома, циркония, гафния, ванадия, ниобия, тантала и др.

Этот же цикл осуществляется и в галогенных лампах. В обычных лампах коэффициент полезного действия крайне низок: в горящей лампочке почти вся электроэнергия превращается не в свет, а в теплоту. Чтобы увеличить светоотдачу лампы, необходимо как можно сильнее повысить температуру ее спирали. Но при этом существенно уменьшается срок жизни лампы: спираль в ней быстро перегорает. Если же ввести в колбу лампы очень небольшое количество йода (или брома), то в результате галогенного цикла вольфрам, испарившийся со спирали и осевший на внутренней поверхности стеклянной колбы, снова переносится на спираль. В такой лампе можно значительно – на сотни градусов – повысить температуру спирали, доведя ее до 3000 о C, что увеличивает светоотдачу вдвое. Мощная галогенная лампа выглядит лилипутом по сравнению с обычной лампой такой же мощности. Например, галогенная лампа мощностью 300 ватт имеет диаметр меньше 1,5 см.

Повышение температуры спирали неизбежно приводит и к более сильному разогреву колб в галогенных лампах. Простое стекло такие температуры не выдерживает, поэтому приходится помещать спираль в трубку из кварцевого стекла. Первые патенты на галогенные лампы были выданы лишь в 1949, а их промышленный выпуск был налажен еще позже. Техническая разработка кварцевых ламп с самовосстанавливающейся вольфрамовой нитью была осуществлена в 1959 фирмой «Дженерал электрик». В таких лампах баллон может раскаляться до 1200 о С! Галогенные лампы имеют отличные световые характеристики, поэтому эти лампы, несмотря на их высокую стоимость, широко используются везде, где нужен мощный и компактный источник света, – в кинопроекторах, автомобильных фарах и т.д.

Соединения йода применяются и для того, чтобы вызвать дождь. Дождь, как и снег, начинается с образования в облаках мельчайших кристалликов льда из паров воды. Далее эти кристаллики-зародыши быстро растут, становятся тяжелыми и выпадают в виде осадков, превращаясь, в зависимости от погодных условий, в снег, дождь или град. Если воздух абсолютно чистый, зародыши льда могут образоваться только при очень низкой температуре (ниже –30 o С). В присутствии же некоторых веществ зародыши льда образуются при значительно более высокой температуре. Так можно вызвать искусственный снегопад (или дождь).

Одна из лучших затравок – иодид серебра; в его присутствии кристаллы льда начинают расти уже при –9 o С. Существенно, что «работать» могут уже мельчайшие частицы иодида серебра размером всего 10 нм (1 нм = 10 –9 м). Для сравнения: радиусы ионов серебра и йода составляют соответственно 0,15 и 0,22 нм. Теоретически из кубического кристалла AgI размером всего 1 см можно получить 10 21 таких мельчайших частиц, и не покажется удивительным, что для выпадения искусственного дождя требуется очень мало иодида серебра. Как подсчитали американские метеорологи, всего 50 кг AgI достаточно для «затравки» всей атмосферы над поверхностью США (а это 9 млн. квадратных километров)! При этом в 1 куб. м образуется свыше 3,5 млн. центров кристаллизации льда. А чтобы поддерживать образование ледяных зародышей, достаточно расходовать всего 0,5 кг AgI в час. Поэтому, несмотря на сравнительно высокую стоимость солей серебра, применение AgI с целью вызвать искусственный дождь оказывается практически выгодным.

Иногда требуется выполнить прямо противоположное задание: «разогнать» тучи, не дать пролиться дождю при проведении какого-либо важного мероприятия (например, Олимпийских игр). В этом случае иодид серебра нужно распылять в облаках заблаговременно, за десятки километров от места проведения торжества. Тогда дождь прольется на леса и поля, а в городе будет солнечная сухая погода.

Илья Леенсон